NASA Technical Memorandum 81346 EXTREME MEAN AND ITS APPLICATIONS Ram Swaroop and James D. Brownlow System Development Corporation and William R. Winter NASA Dryden Flight Research Center December 1979 NASA Technical Memorandum 81346 ## EXTREME MEAN AND ITS APPLICATIONS Ram Swaroop and James D. Brownlow System Development Corporation Edwards, California and William R. Winter Dryden Flight Research Center Edwards, California ### EXTREME MEAN AND ITS APPLICATION Ram Swaroop and James D. Brownlow System Development Corporation and William R. Winter NASA Dryden Flight Research Center ### INTRODUCTION In applications where observations are assumed to follow a normal distribution, very often interest centers around the extreme value, since in some sense, such a value indicates the tolerance of a system. The maximum or minimum sample values in such applications are of limited usefulness, because maximum and minimum tend to extend with increasing sample sizes. Moreover, the information actually sought may not pertain to the actual extreme values, but rather may be needed for the values falling above or below some preassigned p-th percentile. In a given application (ref. 1) the information may be needed on the values falling above the 99th percentile. For such an application, the method of extreme mean is presented in this study. The extreme mean in this study is defined as the mean of a truncated normal distribution above or below a preassigned p-th percentile. An unbiased estimate of this extreme mean is obtained and its variance is then compared with the Cramer-Rao lower bound. Further, the distribution of the standardized estimate and various confidence intervals are obtained. The distortion parameters data obtained from high frequency response pressure measurements made at the inlet/engine interface plane during a YF-12 flight experiment (ref. 1) are used to demonstrate the usefulness of extreme mean in applications. ### **SYMBOLS** ``` = (1\sqrt{n}) + af/\sqrt{2(n-1)} Α a,b Constants corresponding to extreme mean and variance = f\sqrt{(2n-3)/(2n-2)} - 1 В = \sqrt{(1 + d)/2n(n - 1)} C Solution to equation \Phi[(c_p - \mu)/\sigma] = p = \sqrt{2n - 3} D D(T) Density function of T = na^2 (f^2 - 1) d Ε Expectation of random variable F(T) Distribution function of T = \sqrt{(n-1)/2} \Gamma[(n-1)/2]/\Gamma(n/2) f f(x) Density function of the truncated normal distribution I₁₁, I₁₂, I₂₂ Elements of information matrix IDT Measure of simple distortion i Sample number K_{\mathbf{A}} Measure of combined circumferential and radial distortion Kr Measure of radial distortion K_{\Theta} Measure of circumferential distortion L,U Lower and upper confidence bounds 1,u Lower and upper confidence bounds of standardized distribution 2m Length of confidence interval n Sample size Probability of event Percentile assigned for extreme mean Sample standard deviation S ``` = $(\hat{\mu}_E - \mu_E) / \hat{\sigma}_{\mu_E}$, standardized extreme mean variable Τ Sample values x_1, \dots, x_n x Sample mean Chi Square random variable with r degrees of freedom Z Standard normal random variable Confidence level a, ALPHA $\Gamma(x)$ Gamma function μ, MU Mean of normal distribution Extreme mean $^{\mu}$ F o, SIGMA Standard deviation of normal distribution Standard deviation of truncated normal distribution σ_{F} î, HAT Estimate of associated μ or σ $\Phi(x)$ Standard normal distribution function # FORMULAE FOR EXTREME MEAN $\mu_{\mbox{\scriptsize E}}$ AND ITS UNBIASED ESTIMATE Let x_1 , x_2 ,..., x_n be a random sample of size $\,n\,$ from a normal distribution with unknown population parameters, mean $\,\mu\,$ and standard deviation $\,\sigma\,$, shown in figure 1. The extreme mean $\,\mu_E$ is defined as the mean of the truncated distribution shown in figure 1, truncated at $\,c_p\,$ depending on the preassigned value of $\,p\,$. The sample provides a sample mean, $\,\bar{x}\,$, and a sample standard deviation, $\,s\,$, which are sufficient statistics (ref. 2) to estimate any function of $\,\mu\,$ and $\,\sigma\,$. These statistics are independent and are employed in the estimation of $\,\mu\,$ and its distribution. Truncated Distribution Mean $\mu_E^{}$ and Variance $\sigma_E^{}^2$ The density function of a truncated normal distribution is $$f(x) = [(1 - p)\sigma\sqrt{2\pi}]^{-1} exp\{-[(x - \mu)/\sigma]^{2}/2\}; x > c_{p}$$ where p = Φ (c_p - μ)/ σ is preassigned and represented by the unshaded portion of the normal distribution in figure 1. For a given μ and σ , c_p can be obtained from standard normal tables. From the density function, the expres- Figure 1. Normal distribution with mean μ and standard deviation σ , and truncated normal distribution truncated at c_p corresponding to p-th percentile. sions for μ_E and $\sigma_E^{\ 2}$ are $$\mu_{E} = [(1 - p)\sigma \sqrt{2\pi}]^{-1} \int_{C_{p}}^{\infty} x \exp \{-[(x - \mu)/\sigma]^{2}/2\} dx$$ $$= \mu + a\sigma$$ $$\sigma_{E}^{2} = [(1 - p)\sigma \sqrt{2\pi}]^{-1} \int_{c_{p}}^{\infty} x^{2} \exp \{-[(x - \mu)/\sigma]^{2}/2\} dx - \mu_{E}^{2}$$ $$= b\sigma^{2}$$ where $$a = [(1 - p) \sqrt{2\pi}]^{-1} \exp \{-[(c_p - \mu)/\sigma]^2/2\}$$ $$b = [(1 - p) \sqrt{2\pi}]^{-1} \left(\sqrt{2} \left\{ r(3/2) - \int_{0}^{(c_p - \mu)/\sigma} \frac{2}{2} [exp(-t)] t^{1/2} dt \right\} - a \right)$$ For any specific value of p, the values of a and b can be obtained with the available tables of complete and incomplete Gamma functions. For example, for p = .90, $c_p = 1.282$, the corresponding value of a = 1.7541 and b = $(.395)^2$. Unbiased Estimate of μ_{F} It is to be noted that $$\bar{x} = (\Sigma x_i)/n$$ and $$s = [\Sigma(x_i - x)^2/(n - 1)]^{\frac{1}{2}}$$ are sufficient statistics from the sample, and must be employed in the estimation of $\mu_{\mbox{\scriptsize E}}.$ Further $$E(\bar{x}) = \mu$$; $E(s) = \sigma \sqrt{2/(n-1)} \Gamma(n/2) / \Gamma(n-1)/2$ and $$Var(\bar{x}) = \sigma^2/n$$; $Var(s) = \sigma^2 \left(1 - \left(\sqrt{2}r(n/2) / \sqrt{(n-1)} r[(n-1)/2] \right)^2 \right)$ Thus an unbiased estimate of $\mu_{\mbox{\scriptsize F}}$ is given by $$\hat{\mu}_{E} = \bar{x} + as \sqrt{(n-1)/2} \Gamma \left[(n-1)/2 \right] / \Gamma (n/2)$$ $$= \bar{x} + asf$$ where a was derived in the section on truncated distributions, and $$f = \sqrt{(n-1)/2} r [(n-1)/2] / r(n/2)$$ depends on the sample size n via Gamma function values. Since \bar{x} and s^2 are stochastically independent, the variance of the unbiased estimate μ_E is $$Var(\hat{\mu}_{E}) = Var(\bar{x}) + a^{2}f^{2}Var(s)$$ $$= \sigma^{2}/n + a^{2}f^{2}Var(s)$$ $$= \sigma^{2}/n + a^{2}f^{2}\sigma^{2}(1 - f^{-2})$$ $$= (\sigma^{2}/n) [1 - na^{2}(f^{2} - 1)]$$ $$= \hat{\sigma}_{\mu_{E}}^{2}$$ In this expression, sample size n, a and f are known; and the only unknown factor is σ^2 . Thus an estimate of $Var(\hat{\mu}_E)$ can be obtained by replacing σ^2 by s^2 obtained from the sample. Therefore, $$Var(\hat{\mu}_{E}) = (s^{2}/n) [1 + na^{2}(f^{2} - 1)]$$ $$= (s^{2}/n)(1 + d)$$ $$= \hat{\sigma}_{\mu_{E}}^{2}$$ This estimate is different from s^2/n by a factor of $d = na^2(f^2 - 1)$, which is a function of n; and even for sufficiently large n, the factor d is not negligible. Cramer-Rao Lower Bound of Variance of $\hat{\mu}_{F}$ Variance of the estimate $\hat{\mu}_E$ measures, in some sense, the quality of the unbiased estimate. The smaller the variance, the better the estimate. An unbiased estimate is considered best if it achieves the minimum possible variance without specifying the estimate. The Cramer-Rao lower bound for \bar{x} and s are $$Var(\bar{x}) \ge 1/E$$ $\frac{\partial}{\partial \mu} \ln f(\bar{x},s)^2 = 1/I_{11}$ $Var(s) \ge 1/E$ $\frac{\partial}{\partial \sigma} \ln f(\bar{x},s)^2 = 1/I_{22}$ In many cases, it is possible to find an unbiased estimate which achieves this bound. In other cases, it is never attainable. In this section, the lowest bound is obtained and then compared with the variance $\hat{\mu}_E$ computed in the earlier section. The joint distribution of \bar{x} and s is (ref. 3) $$f(\bar{x},s) = k_n(s^{(n-2)}/\sigma^n) \exp \left\{ -[(\bar{x} - \mu) \sqrt{n}/\sigma]^2 - (n-1)s^2/\sigma^2 \right\} / 2$$ where $$kn = \left[2\sqrt{n} (n-1)^{(n-1)/2}\right] / \left\{\sqrt{2\pi} 2^{(n-1)/2} r [(n-1)/2]\right\}$$ Thus $$\ln f(\bar{x},s) = \ln k_n + (n-2) \ln s - n \ln \sigma - \left\{ [(\bar{x} - \mu) \sqrt{n}/\sigma]^2 + (n-1)s^2/\sigma^2 \right\} / 2$$ where k_n is the first factor in $f(\bar{x},s)$. From the expression for $\ln f(\bar{x},s)$, it is seen by differentiating that The Cramer-Rao lower bound for $\overline{\mathbf{x}}$ and s from these expressions is already given. It is known that the distribution of $\left[(\bar{x}-\mu)\sqrt{n}/\sigma\right]^2$ is Chi Square with 1 degree of freedom. The distribution of (n-1) s $^2/\sigma^2$ is Chi Square with (n-1) degrees of freedom. The two distributions are independent. If Y_r is a Chi Square variable with r degrees of freedom, then $E(Y_r) = r$ and $E(Y_r^2) = 2r + r^2$. Therefore $$\begin{split} I_{11} &= (n/\sigma^2) \ E \ \left[(\bar{x} - \mu) \sqrt{n}/\sigma \right]^2 \\ &= n/\sigma^2 \\ I_{22} &= (1/\sigma^2) \ E \quad Y_1 + Y_{(n-1)} - n^2 \\ &= (1/\sigma^2) \ E \quad Y_1^2 + Y_{(n-1)}^2 + n^2 + 2Y_1Y_{(n-1)} - 2n \ Y_1 + Y_{(n-1)} \\ &= (1/\sigma^2) \left\{ (2+1) + \left[2(n-1) + (n-1)^2 \right] + n^2 + 2(n-1) - 2n^2 \right\} \\ &= 2n/\sigma^2 \end{split}$$ Thus the lowest bound of the variance of $\hat{\mu}_E = \bar{x} + afs$ is obtained by the appropriate function of inverses of I_{11} and I_{22} . Therefore $$Var \hat{\mu}_{E} \ge 1/I_{11} + a^{2}f^{2}/I_{22}$$ $$\ge \sigma^{2}/n + a^{2}f^{2}\sigma^{2}/2n$$ The expression for the variance of $\hat{\mu}_{F}$ obtained in the earlier section is Var $$\hat{\mu}_{E} = \sigma^{2}/n + a^{2}\sigma^{2}(f^{2} - 1)$$ which is larger than the lower bound shown above by a factor of
$a^2\sigma^2\Big[(f^2-1)-f^2/2n\Big]$. For larger values of n, this factor's value decreases; therefore, $\hat{\mu}_E$ is a satisfactory estimate of μ_E for all applications. In fact, as n approaches infinity, the variance of the estimate achieves the Cramer-Rao lower bound. Large Sample Distribution of T = $$(\hat{\mu}_E - \mu_E) / \hat{\sigma}_{\mu_E}$$ The exact distribution of $\hat{\mu}_E = \bar{x} + afs$ depends on the sum of both the normal and Chi Square distributions. However, for a large sample (n > 30), an approximate distribution is available which can be used to compute confidence bounds. It is to be noted that the distribution of $(\bar{x} - \mu)\sqrt{n}/\sigma = Z$ is standard normal, that the distribution of $(n-1)s^2/\sigma^2$ is Chi Square with (n-1) degrees of freedom, and these distributions are independent of one another. For a large sample $(n \ge 30)$, the distribution can be approximated by $$Z = \sqrt{2Y_{(n-1)}} - \sqrt{2(n-1)} - 1$$ $$= (s/\sigma) \sqrt{2(n-1)} - \sqrt{2n-3}$$ which yields $$s/\sigma = \left[\sqrt{2(n-1)}\right]^{-1} \left(Z + \sqrt{2n-3}\right)$$ In this section, instead of finding the distribution of $\hat{\mu}_E$, the distribution of the standardized T = $(\hat{\mu}_E - \mu_E)/\hat{\sigma}_{\mu_E}$ is obtained by the above approximation of s/ σ . $$T = (\hat{\mu}_{E} - \mu_{E})/\hat{\sigma}_{\mu_{E}}$$ $$= \left[(\bar{x} + afs) - (\mu + a\sigma) \right] / s\sqrt{(1 + d)/n}$$ $$= \left\{ (1/\sqrt{n}) \left[(x - \mu)\sqrt{n}/\sigma \right] \sigma + a\sigma(fs/\sigma - 1) \right\} \left[\sigma(s/\sigma)\sqrt{(1 + d)/n} \right]^{-1}$$ $$\approx \frac{(Z/\sqrt{n}) + a\sigma}{\sqrt{(1 + d)/n} \left[(Z + \sqrt{2n - 3}) / \sqrt{2(n - 1)} \right] - 1}$$ $$\approx \frac{Z \left[(1/\sqrt{n}) + af/\sqrt{2(n - 1)} \right] + a \left[f\sqrt{(2n - 3)/(2n - 2)} - 1 \right]}{\sqrt{(1 + d)/2n(n - 1)} \left(Z + \sqrt{2n - 3} \right)}$$ $$\approx (ZA + B)/C(Z + D)$$ where A = $$(Z/\sqrt{n}) + af/\sqrt{2(n-1)}$$ B = $a(f\sqrt{(2n-3)/(2n-2)} - 1)$ C = $\sqrt{(1+d)/2n(n-1)}$ D = $\sqrt{2n-3}$ are functions of the sample size n and a preassigned value of p. Since Z has a standard normal density, the density function of T is given by $$D(t) = [C(AD - B)/\sqrt{2\pi}](A - Ct)^{-2} exp\{-[(CDt - B)/(A - Ct)]^{2}/2\}$$ This density function does not depend on μ or σ , but is a function of the sample size n and the preassigned value of p. Appendix B lists the computer program which generates the density and distribution function of T for a designated sample size n and value of p. A sample of the density of T for n = 90 and p = .90 is tabulated in Table 1 and shown in figure 2. Figure 2 also contrasts the density of T with a standard normal density. ## Confidence Intervals of $\boldsymbol{\mu}_{\boldsymbol{F}}$ A confidence interval is either specified by assigning a level of confidence $\alpha,$ or by assigning the length of the confidence interval 2m. In the first case, lower and upper confidence bounds L and U are obtained which, in a long series of experiments, are likely to include the population μ_E , $\alpha\%$ of times. In the second case, the values of L and U are fixed and the level α is obtained. Analytically both the cases involve solving for either L, U or $\alpha,$ given the other. Confidence interval with α confidence. In this case, the equation $$Pr [1 < (ZA + B)/C(Z + D) < u] = \alpha$$ needs to be solved. Since Z is a standard normal variate, it follows that $$1 = \left(-Z_{\alpha/2}A + B\right) / \left[C(-Z_{\alpha/2}) + D\right]$$ $$u = \left(Z_{\alpha/2}A + B\right) / \left(CZ_{\alpha/2} + D\right)$$ where Z is obtained from a normal probability table. For these expressions, it is seen that the lower and upper confidence values, L and U, for μ_F are L = $$\bar{x}$$ + afs - us $\sqrt{(1 + d)/n}$ U = \bar{x} + afs + 1s $\sqrt{(1 + d)/n}$ TABLE 1. DENSITY (D(T)) AND DISTRIBUTION (F(T)) OF THE RANDOM VARIABLE T = (MU HAT - MU)/S(MU HAT) N = 90 | _ | | | _ | | | |------------|------------------------------|---|----------------------|--------------------------|------------| | Ţ | D(T) | F(T) | Ţ | O(T) | F(T) | | -5.00 | .003591 | .002637 | 0.00 | .281669 | .500024 | | -4.90 | •004093 | .003020 | •10 | 283965 | •528317 | | -4.80 | .004662 | .003457 | .20 | .284827 | .556769 | | -4.70 | .005304 | .003955 | • 30 | .284193 | .585232 | | -4.60 | .006029 | .004521 | . 40 | .282027 | .613556 | | -4.50 | .006846 | .005164 | -50 | .278312 | .641586 | | -4.40 | .007766 | .005894 | .60 | .273062 | .669168 | | -4.30 | .008799 | .006721 | .70 | .266315 | .696149 | | -4.20 | .009958 | .007658 | | | | | -4.10 | | | • B O | . 258136 | .722383 | | -4.10 | .011257 | .008717 | • 90 | .248620 | • 747731 | | -4.00 | .012709 | .009914 | 1.00 | .237884 | .772066 | | -3.90 | .014329 | .011265 | 1.10 | .226069 | • 795272 | | -3.80 | .016135 | .0127:6 | 1.20 | .213339 | .817249 | | -3.70 | .018143 | .014498 | 1.30 | •199872 | .837915 | | -3.60 | .020371 | .016422 | 1.40 | •185859 | .857206 | | -3.50 | .022840 | .018581 | 1.50 | .171496 | .875075 | | -3.40 | .025557 | .020999 | 1.60 | .156985 | .891500 | | -3.30 | .028575 | .023703 | 1.70 | .142521 | .906474 | | -3.20 | .031884 | .026724 | 1.80 | .128292 | .920012 | | -3.10 | 035515 | 030091 | 1.90 | .114471 | 932146 | | 0.10 | •••• | *************************************** | 14 70 | •1144/1 | • 702140 | | -3.00 | .039489 | .033838 | 2.00 | .101214 | .942925 | | -2.90 | 0 4 38 2 7 | .03 8001 | 2.10 | .088656 | . 952412 | | -2.80 | .048549 | .042616 | 2.20 | .076905 | .960683 | | -2.70 | .053673 | .047724 | 2.30 | .0 (6046 | .967823 | | -2.60 | .059218 | .053365 | 2.40 | .056136 | . 97 3924 | | -2.50 | .065199 | . 05 (582 | 2.50 | .0 47204 | .979083 | | -2.40 | .071626 | . 066420 | 2.60 | .039256 | .983398 | | -2.30 | .078510 | .073923 | 2.70 | .0 32275 | . 986966 | | -2.20 | .085856 | .082137 | 2.80 | .026223 | . 989883 | | -2.10 | .093662 | .091109 | 2.90 | .021047 | 992240 | | -2.110 | . 0 9 300 2 | • 0 21103 | 2.0.70 | 40 510 47 | 1 7766 40 | | -2.00 | .101924 | .100 8 85 | 3.00 | .016680 | .994120 | | -1.90 | .110628 | .111509 | 3.10 | .013048 | .995600 | | -1.80 | .119757 | .123024 | 3.20 | .010078 | • 996751 | | -1.70 | .129283 | .135473 | 3.30 | .00766.3 | •997633 | | -1.60 | .139170 | .148893 | 3.40 | .005748 | .998300 | | -1.50 | .149374 | .163318 | 3.50 | .0 (4248 | .998797 | | -1.40 | .159839 | .178777 | 3.60 | .003091 | .999161 | | -1.30 | .170502 | .195292 | 3.70 | .002213 | .999424 | | -1.20 | .181287 | .212881 | 3.80 | .001559 | 999611 | | -1.10 | .192110 | .231551 | 3.90 | .0 C1079 | 999742 | | 7.010 | •1)2110 | • 2 31 3 31 | 3. 7 . | •0 (10) | • // 3/ 42 | | -1.00 | .202877 | .251301 | 4.00 | .0 CO 7 34 | .999832 | | 90 | .213482 | .272121 | 4.10 | .000490 | . 999892 | | 80 | .223815 | .293989 | 4 • 20 | .000321 | • 999932 | | 70 | 233755 | .316871 | 4.30 | .000206 | .999958 | | 60 | .243178 | .340722 | 4.40 | •000130 | • 999975 | | 50 | • 251954 | . 365485 | 4.50 | .000080 | • 999985 | | 40 | .259953 | .391087 | 4.60 | .000048 | • 999991 | | 30 | . 267046 | .417445 | 4.70 | .00028 | • 999995 | | 20 | .273107 | . 444462 | 4.80 | .000016 | . 999997 | | 10 | .278018 | .472028 | 4.90 | .000009 | . 999999 | | | - · · · | | - | | - | Figure 2. Density function of the standard normal variate Z, and the density function of the standardized extreme mean variate T. Confidence interval of fixed length 2m.- In this case, it is already known that $L = \mu_E - m$ and $U = \mu_E + m$. The object, therefore, is to find the corresponding value of α_m . Since $\sigma_{\mu_E} = s\sqrt{(1+d)/n}$ in the terms of standardized T variable, it is required to find $$\alpha_{\rm m} = \Pr \left[-m/s\sqrt{(1+d)/n} < T < m/s\sqrt{(1+d)/n} \right]$$ $$\alpha_{\rm m} = \Pr \left[-m/s\sqrt{(1+d)/n} < (ZA + B)/C(Z + D) < m/s\sqrt{(1+d)/n} \right]$$ $$= \Pr \left[Z_{\rm L} < Z < Z_{\rm U} \right]$$ $$= \Phi(Z_{\rm U}) - \Phi(Z_{\rm L})$$ The right-hand side can be read from standard normal probability tables after calculating \mathbf{Z}_{l} and \mathbf{Z}_{ll} which are given below. $$Z_L = mCD/s\sqrt{(1 + d)/n} + B / A + mC/s\sqrt{(1 + d)/n}$$ $Z_U = mCD/s\sqrt{(1 + d)/n} - B / A - mC/s\sqrt{(1 + d)/n}$ A table of confidence bounds for standardized T for various sample sizes are given in Appendix A for ready use. #### APPLICATION TO FLIGHT DATA To demonstrate the usefulness of extreme mean estimation, data are obtained on distortion parameter IDT, K_A , K_Θ , and K_r from high frequency response pressure measurements made at the inlet/engine interface plane during a supersonic aircraft propulsion research program (ref. 1). The summarized data are presented in Table 2. The data show the sample size, the sample mean $(\bar{\mathbf{x}})$ and standard deviation $(\hat{\sigma})$ for all distortion parameters. The succeeding four tables, numbered 3, 4, 5, and 6, show the extreme means and their lower and upper 95% confidence bounds for α = .95 . Tables 7, 8, 9, and 10 present corresponding values for α = .99 . TABLE 2. SUMMARY OF DISTORTION PARAMETERS' DATA | SAMPLE | SAMPLE | | DT | _ K _A | | _ K ₍ | | _ Kr | | |--------|-------------|------|----------------|------------------|----------|------------------|-------------|-------|----------| | ## | SIZE | x | - ô | x ^ | <u> </u> | Ī. | ð. | x ' | <u> </u> | | | | | | | | | , | | | | 1 | 470 | .137 | .012 | .875 | .084 | .377 | .068 | .498 | .049 | | 2 | 470 | .167 | .013 | 1.285 | .119 | .767 | .101 | .518 | .067 | | 3 | 470 | .194 | .017 | 1.050 | .082 | .400 | .065 | .650 | .050 | | 4 | 470 | .207 | .016 | 1.088 | .081 | . 360 | .074 | .729 | .056 | | 5 | 470 | .225 | .018 | 1.170 | .095 | .443 | .076 | .727 | .062 | | | | | | | | | | | | | 6 | 406 | .118 | .012 | .744 | .071 |
.414 | .060 | .330 | .038 | | 7 | 406 | .120 | .014 | .572 | .052 | .297 | .043 | .275 | .029 | | 8 | 406 | .186 | .032 | .886 | .149 | .519 | .128 | .367 | .106 | | 9 | 406 | .177 | .015 | .834 | .079 | .264 | .059 | .570 | .043 | | 10 | 406 | .200 | .019 | .891 | .109 | .373 | .074 | .518 | .057 | | | | | | | | | | | | | 11 | 448 | .194 | .012 | 1.075 | .093 | .377 | .078 | .697 | .055 | | 12 | 448 | .226 | .013 | 1.153 | .103 | .415 | .090 | .738 | .057 | | 13 | 44 8 | .257 | .027 | 1.514 | .136 | .541 | .112 | .973 | .093 | | 14 | 448 | .184 | .014 | .682 | .058 | .302 | .047 | . 381 | .036 | | 15 | 448 | .206 | .015 | .731 | .074 | .314 | .059 | .418 | .043 | | | | | | | : | | | | | TABLE 3. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: IDT) | 3 470 .1940 .0170 .2261 .2324 4 470 .2070 .0160 .2372 .2432 5 470 .2250 .0180 .2590 .2657 6 406 .1180 .0120 .1405 .1453 7 406 .1200 .0140 .1462 .1519 8 406 .1860 .0320 .2460 .2589 9 406 .1770 .0150 .2051 .2112 10 406 .2000 .0190 .2356 .2433 11 446 .1940 .0120 .2166 .2212 12 448 .2260 .0130 .2505 .2555 | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |--|--|---|---|--|---|---| | | NUMBER | SIZE | MEAN | STD DEV | Bound | BOUND | | 13 448 .2570 .0270 .3073 .3182
14 448 .1840 .0140 .2104 .2157
15 448 .2060 .0150 .2342 .2400 | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 470
470
470
470
406
406
406
406
448
448
448 | .1670
.1940
.2070
.2250
.1160
.1200
.1860
.1770
.2000
.1940
.2260
.2570
.1640 | .0130
.0170
.0160
.0180
.0120
.0140
.0320
.0150
.0190
.0120
.0130
.0270 | .1915
.2261
.2372
.2590
.1405
.1462
.2460
.2051
.2356
.2166
.2505
.3073
.2104 | .1964
.2324
.2432
.2657
.1453
.1519
.2589
.2112
.2433
.2212
.2555
.3182
.2157 | TABLE 4. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: KA) | 2 470 1.2850 .1190 1.5095 1.554 3 470 1.0500 .0820 1.2047 1.2354 4 470 1.0680 .0810 1.2408 1.2712 5 470 1.1700 .0950 1.3492 1.3846 6 406 .7440 .0710 .8770 .9057 7 406 .5720 .0520 .6694 .6904 8 406 .8860 .1490 1.1652 1.2253 9 406 .8340 .0790 .9820 1.0139 10 406 .8910 .1090 1.0953 1.1392 11 448 1.0750 .0930 1.2501 1.2858 | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |--|---|---|--|--|--|--| | | NUMBER | SIZE | MEAN | STD DEV | BOUND | BOUND | | 13 448 1.5140 .1360 1.7700 1.8222
14 448 .6820 .0580 .7912 .8134 | 3
4
5
6
7
8
9
10
11
12
13 | 470
470
470
470
406
406
406
406
448
448
448 | 1.2850
1.0500
1.0860
1.1700
.7440
.5720
.8860
.8340
.8910
1.0750
1.1530
1.5140
.6820 | .1190
.0820
.0810
.0950
.0710
.0520
.1490
.0790
.1090
.1030
.1360
.0580 | 1.5095
1.2047
1.2408
1.3492
.8770
.6694
1.1652
.9820
1.0953
1.2501
1.3469
1.7700
.7912 | 1.0649 1.5541 1.2354 1.2712 1.3848 .9057 .6904 1.2253 1.0139 1.1392 1.2858 1.3864 1.8222 .8134 .8987 | TABLE 5. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: K_Q) | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |---|--|--|--|---|--| | NUMBER | SIZE | MEAN | STD DEV | BOUND | BOUND | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 470
470
470
470
470
406
406
406
408
448
448
448 | .3770
.7670
.4000
.3600
.4430
.4140
.2970
.5190
.2640
.3730
.3770
.4150
.5410
.3020 | .0680
.1010
.0650
.0750
.0760
.0600
.0430
.1280
.0590
.0740
.0780
.0900
.1120
.0470 | .5053
.9575
.5226
.5015
.5864
.5264
.3776
.7589
.3746
.5117
.5238
.5844
.7518 | .5308
.9954
.5470
.5296
.6149
.5506
.3949
.8105
.39415
.5538
.61948
.4085 | TABLE 6. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: K_R) | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |---|--|--|---|--|---| | NUMBER | SIZE | MEAN | STD DEV | BOUND | BOUND | | 1
2
3
4
5
6
7
8
9
10
11
12 | 470
470
470
470
470
406
406
406
448
448 | .4980
.5180
.6500
.7290
.7270
.3300
.2750
.3670
.5700
.5180
.6970
.7380 | .0490
.0670
.0500
.0560
.0620
.0380
.0290
.1060
.0430
.0570
.0550 | .5904
.6444
.7443
.8346
.8440
.4012
.3293
.5656
.6506
.6248
.8005
.8453 | .6088
.6695
.7631
.8556
.8672
.4165
.3410
.6679
.6478
.8217
.8672 | | 14 | 448 | .3810 | .0360 | .4488 | .4626 | | 15 | 446 | .4180 | .0430 | .4989 | .5155 | TABLE 7. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: IDT) | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |---|---|--|--|---|---| | NUMBER | SIZE | MEAN | STD DEV | BOUND | BOUND | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 470
470
470
470
470
406
406
406
406
448
448 | .1370
.1670
.1940
.2070
.2250
.1180
.1200
.1600
.1770
.2000
.1940
.2260 | .0120
.0130
.0170
.0160
.0180
.0120
.0140
.0320
.0150
.0150
.0190
.0120 | .1655
.1979
.2344
.2451
.2673
.1463
.1530
.2615
.2124
.2448
.2225
.2568
.3210 | .1730
.2060
.2450
.2550
.2790
.1544
.1624
.2830
.2255
.2576
.2301
.2651
.3383 | | 14 | 448 | .1840 | .0140 | .2172 | .2262 | | 15 | 448 | .2060 | .0150 | .2416 | .2512 | TABLE 6. 95 PERCENT CONFIDENCE
INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: KA) | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |--------|--------|--------|---------|--------|--------| | NUMBER | SIZE | MEAN | STD DEV | BOUND | BOUND | | | | | | | | | | | | | | | | 1 | 470 | . მ750 | .0840 | 1.0748 | 1.1272 | | 2 | 470 | 1.2850 | .1190 | 1.5680 | 1.6423 | | 3 | 470 | 1.0500 | .0820 | 1.2450 | 1.2962 | | 4 | 470 | 1.0880 | .0810 | 1.2807 | 1.3312 | | 5 | 470 | 1.1700 | .0950 | 1.3960 | 1.4552 | | 6 | 406 | .7440 | .0710 | .9114 | .9591 | | 7 | 406 | .5720 | .0520 | .6946 | .7296 | | 8 | 406 | . 8360 | . 1490 | 1.2374 | 1.3375 | | 9 | 406 | .8340 | .0790 | 1.0203 | 1.0734 | | 10 | 406 | .8910 | .1090 | 1.1481 | 1.2213 | | 11 | 448 | 1.0750 | .0930 | 1.2956 | 1.3550 | | 12 | 448 | 1.1530 | .1030 | 1.3973 | 1.4631 | | 13 | 448 | 1.5140 | .1360 | 1.8366 | 1.9235 | | 14 | 448 | .6820 | .0580 | .8196 | .8566 | | 15 | 448 | .7310 | .0740 | .9065 | .9538 | | - | | | • | | | TABLE 9. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: K_{Θ}) | SAMPLE | SAMPLE | SAMPLE | SAMPLE | LOWER | UPPER | |---|--|--|--|---|---| | NUMBER | SIZE | MEAN | STD DEV | BOUND | BOUND | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 470
470
470
470
470
406
406
406
406
448
448
448 | .3770
.7670
.4000
.3600
.4430
.4140
.2970
.5190
.2640
.3730
.3770
.4150
.5410
.3020 | .0680
.1010
.0650
.0750
.0760
.0600
.0430
.1280
.0590
.0740
.0780
.0780 | .5387
1.0072
.5546
.5384
.6238
.5555
.3984
.8209
.4031
.5475
.56285
.8067
.4135 | .5811
1.0702
.5951
.5852
.6712
.5852
.4273
.9069
.4428
.5972
.6119
.6860
.8782
.4435 | TABLE 10. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: K_R) | SAMPLE
NUMBER | SAMPLE
S1ZE | SAMPLE
MEAN | SAMPLE
STD DEV | LOWER
BOUND | UPPER
Bound | |---|--|---|--|--|---| | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 470
470
470
470
470
406
406
406
406
448
448
448 | .4980
.5180
.6500
.7290
.7270
.3300
.2750
.3670
.5700
.5180
.6970
.7380
.9730 | .0490
.0670
.0500
.0560
.0620
.0380
.0290
.1060
.0430
.0570
.0550
.0570 | .6145
.6774
.7689
.8622
.8745
.4196
.3434
.6170
.6714
.6524
.8275
.8732 | .6451
.7191
.8001
.8971
.9131
.4451
.3629
.6882
.7003
.6907
.8626
.9096
1.2530
.4894 | | 15 | 448 | .4180 | .0430 | .5200 | .5475 | ## APPENDIX A This appendix presents upper and lower confidence bounds of T for α = .90, .95, .975, .99 and various sample sizes. TABLE 11. UPPER AND LOWER CONFIDENCE SOUNDS OF T = (MU HAT - MU)/S(MU) FOR ALPHA =0.9(, 3.95, 3.975, AND 3.99 p=.9 UPPER BOUND = (B+A*Z)/(C*(D+Z)), LOWER BOUND = (B-A*Z)/(C*(D-Z)) (Z VALUES ARE STANCARD NORMAL VALUES FOR ALPHA) | SAMPLE | ALPHA = 0.90 | ALPHA = 8.95 | ALPHA = N.975 | ALPHA = 0.99 | |----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | JILL | BOUND BOUND | BOUND BOUND | BOUND BOUND | GUND BOUND | | | 30045 | 20010 | 300.12 | | | 30 | 1.9409 -3.0236 | 2.2361 -3.8055 | 2.4825 -4.5783 | 2.7602 -5.6207 | | 40 | 1.9798 -2.8941 | 2.2398 -3.6076 | 2.5504 -4.2996 | 2.8462 -5.2125 | | 50 | 2.0079 -2.8137 | 2.3287 -3.4863 | 2.5997 -4.1309 | 2.9088 -4.9700 | | 60 | 2.0296 -2.7530 | 2.3586 -3.4030 | 2.6378 -4.0160 | 2.9574 -4.8067 | | 61 | 2.0315 -2.7533 | 2.3613 -3.3960 | 2.6411 -4.0065 | 2.9617 -4.7932 | | 62 | 2.0333 -2.7488 | 2.3639 -3.3892 | 2.6444 -3.9972 | 2.9658 -4.7841 | | 63 | 2.0352 -2.7444 | 2.3664 -3.3827 | 2.6476 -3.9882 | 2.9700 -4.7674 | | 64 | 2.6370 -2.7401 | 2.3689 -3.3763 | 2.6508 -3.9795 | 2.9740 -4.7551 | | 65 | 2.0387 -2.7359 | 2.3713 -3.3701 | 2.6539 -3.9710 | 2.9779 -4.7431 | | 66 | 2.0404 -2.7319 | 2.3737 -3.3641 | 2.6569 -3.9627 | 2.9818 -4.7314 | | 67 | 2.0421 -2.7279 | 2.376(-3.3582 | 2.6599 -3.9547 | 2.9856 -4.7201 | | 68 | 2.0437 -2.7241 | 2.3783 -3.3525 | 2.6628 -3.9468 | 2.9893 -4.7091 | | 69 | 2.0454 -2.7203 | 2.3805 -3.3469 | 2.6656 -3.9392 | 2.9929 -4.6984 | | 76 | 2.0469 -2.7167 | 2.3827 -3.3415 | 2.6684 -3.9318 | 2.9965 -4.6880
3.0000 -4.6778 | | 71 | 2.0485 -2.7131 | 2.3849 -3.3362 | 2.6712 -3.9246 | 3.0635 -4.6679 | | 72 | 2.0500 -2.7096 | 2.387(-3.3311
2.3891 -3.3268 | 2.6739 -3.9175
2.6765 -3.9107 | 3.0069 -4.6583 | | 73 | 2.0515 -2.7662 | 2.3911 -3.3211 | 2.6791 -3.9846 | 3.0102 -4.6489 | | 74
75 | 2.0530 -2.7029
2.0544 -2.6997 | 2.3931 -3.3163 | 2.6817 -3.8974 | 3.0135 -4.6397 | | 75
76 | 2.1.559 -2.6965 | 2.3951 -3.3116 | 2.6842 -3.8910 | 3.0167 -4.6308 | | 77 | 2.6573 -2.6934 | 2.3970 -3.3771 | 2.6867 -3.8848 | 3.0198 -4.6220 | | 78 | 2.0586 -2.6904 | 2.3989 -3.3026 | 2.6891 -3.8787 | 3.0230 -4.6135 | | 79 | 2.0600 -2.6875 | 2.4808 -3.2982 | 2.6915 -3.8727 | 3.0260 -4.6052 | | 80 | 2.0613 -2.6846 | 2.4626 -3.2939 | 2.6938 -3.8669 | 3.0290 -4.5970 | | 81 | 2.0626 -2.6817 | 2.4045 -3.2898 | 2.6961 -3.8612 | 3.0320 -4.5891 | | 82 | 2.0639 -2.6790 | 2.4062 -3.2857 | 2.6984 -3.8556 | 3.0349 -4.5813 | | 93 | 2.0652 -2.6763 | 2.4087 -3.2816 | 2.7007 -3.8502 | 3.0378 -4.5737 | | 94 | 2.0664 -2.6736 | 2.4997 -3.2777 | 2.7029 -3.8449 | 3.0406 -4.5662 | | 85 | 2.0676 -2.6710 | 2.4114 -3.2739 | 2.7050 -3.8396 | 3.0433 -4.5590 | | 36 | 2.0688 -2.6684 | 2.4131 -3.2761 | 2.7072 -3.8345 | 3.0461 -4.5518 | | 87 | 2.0700 -2.6659 | 2.4147 -3.2664 | 2.7693 -3.8295 | 3.3488 -4.5448 | | 88 | 2.0712 -2.6635 | 2.4164 -3.2628 | 2.7113 -3.9246 | 3.0514 -4.5380 | | 89 | 2.0723 -2.6611 | 2.418(-3.2593 | 2.7134 -3.8198 | 3.0540 -4.5313 | | 90 | 2.0734 -2.6537 | 2.4195 -3.2558 | 2.7154 -3.8151 | 3.0566 -4.5247 | | 91 | 2.0746 -2.6564 | 2.4211 -3.2524 | 2.7173 -3.8104 | 3.0592 -4.5183 | | 92 | 2.0757 -2.6541 | 2.4226 -3.2490 | 2.7193 -3.3059 | 3.0617 -4.5120
3.0641 -4.5058 | | 93 | 2.6767 -2.6519 | 2.4241 -3.2458 | 2.7212 -3.8014 | 3.0665 -4.4997 | | 94 | 2.0778 -2.6497 | 2.4256 -3.2425
2.4271 -3.2394 | 2.7231 -3.7971
2.7251 -3.7928 | 3.0689 -4.4937 | | 95 | 2.0789 -2.6476 | 2.4271 -3.2394
2.4341 -3.2244 | 2.7339 -3.7725 | 3.0805 -4.4655 | | 100 | 2.0839 -2.6374 | 2.4586 -3.1754 | 2.7646 -3.7062 | 3.1198 -4.3738 | | 120 | 2.1011 -2.6040 | 204301 -301124 | 201040 001002 | 312273 453700 | TABLE 11.-CONTINUED | SAMPLE | ALPHA = 3.90 | ALPHA = 0.95 | ALPHA = 0.975 | ALPHA = 0.99 | |-------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | 3122 | BOUND BOUND | BOUND BOUND | BOUND BOUND | BOUND BOUND | | | 300110 000110 | 555115 | 500.0 | SCOME SCOME | | 140 | 2.1178 -2.5827 | 2.4806 -3.1432 | 2.7930 -3.6620 | 3.1558 -4.3119 | | 160 | 2.1287 -2.5623 | 2.4959 -3.1137 | 2.8126 -3.6225 | 3.1812 -4.2577 | | 180 | 2.1379 -2.5458 | 2.5086 -3.0897 | 2.8292 -3.5905 | 3.2027 -4.2141 | | 200 | 2.1457 -2.5321 | 2.5199 -3.1699 | 2.8435 -3.5640 | 3.2212 -4.1779 | | 220 | 2.1526 -2.5205 | 2.5295 -3.0531 | 2.8559 -3.5416 | 3.2373 -4.1474 | | 240 | 2.1587 -2.5105 | 2.5380 -3.0386 | 2.8669 -3.5223 | 3.2515 -4.1213 | | 260 | 2.1641 -2.5018 | 2.5456 -3.0260 | 2.8767 -3.5055 | 3.2642 -4.0985 | | 2 90 | 2.1689 -2.4941 | 2.5524 -3.0149 | 2.8855 -3.4907 | 3.2757 -4.8785 | | 300 | 2.1733 -2.4872 | 2.5586 -3.0050 | 2.8934 -3.4776 | 3.2860 -4.0607 | | 320 | 2.1773 -2.4810 | 2.5642 -2.9961 | 2.9007 -3.4658 | 3-2955 -4-6448 | | 340 | 2.1810 -2.4755 | 2.5694 -2.9881 | 2.9073 -3.4552 | 3.3042 -4.0304 | | 360 | 2-1844 -2-4784 | 2.5741 -2.9868 | 2.9135 -3.4455 | 3.3121 -4.0173 | | 380 | 2.1875 -2.4658 | 2.5785 -2.9741 | 2.9191 -3.4367 | 3.3195 -4.0054 | | 400 | 2.1904 -2.4615 | 2.5826 -2.9680 | 2.9244 -3.4296 | 3.3264 -3.9945 | | 420 | 2.1931 -2.4576 | 2.5864 -2.9624 | 2.9293 -3.4211 | 3.3328 -3.9844 | | 440 | 2.1956 -2.4539 | 2.5899 -2.9571 | 2.9339 -3.4141 | 3.3389 -3.9751 | | 460 | 2.1980 -2.4505 | 2.5933 -2.9523 | 2.9382 -3.4077 | 3.3444 -3.9664 | | 480 | 2.2032 -2.4474 | 2.5964 -2.9477 | 2.9423 -3.4017 | 3.3497 -3.9583 | | 5 00 | 2.2023 -2.4444 | 2.5994 -2.9435 | 2.9461 -3.3961 | 3.3547 -3.9507 | | 520 | 2.2043 -2.4417 | 2.6022 -2.9395 | 2.9497 -3.3908 | 3.3594 -3.9437 | | 544 | 2.2062 -2.4390 | 2.6048 -2.9358 | 2.9532 -3.3859 | 3.3639 -3.9370 | | 560 | 2.2079 -2.4366 | 2.6073 -2.9322 | 2.9564 -3.3812 | 3.3681 -3.9307 | | 5 80 | 2.2096 -2.4343 | 2.6097 -2.9289 | 2.9595 -3.3768 | 3.3722 -3.9248 |
 600 | 2.2112 -2.4321 | 2.6126 -2.9257 | 2. 9624 - 3. 3726 | 3.3760 -3.9192 | | 620 | 2.2128 -2.4300 | 2.6141 -2.9227 | 2.9652 -3.3687 | 3.3797 -3.9139 | | 640 | 2.2142 -2.4230 | 2.6162 -2.9199 | 2.9679 -3.3649 | 3.3832 -3.9089 | | 668 | 2.2157 -2.4261 | 2.6182 -2.9172 | 2.9705 -3.3613 | 3.3865 -3.9041 | | 630 | 2.2170 -2.4243 | 2.6201 -2.9146 | 2.9729 -3.3579
2.9753 -3.3547 | 3.3897 -3.8995
3.3928 -3.8951 | | 700
720 | 2.2183 -2.4226 | 2.6219 -2.9121
2.6236 -2.9198 | 2.9775 -3.3516 | 3.3958 -3.8909 | | | 2.2195 -2.4289 | 2.6253 -2.9375 | 2.9797 -3.3486 | 3.3986 -3.8870 | | 740
760 | 2.2207 -2.4193
2.2219 -2.4178 | 2.6269 -2.9054 | 2.9818 -3.3457 | 3.4013 -3.8831 | | 7 90 | 2.2230 -2.4164 | 2.6285 -2.9033 | 2.9838 -3.3430 | 3.4040 -3.8795 | | 800 | 2.2240 -2.4150 | 2.6300 -2.9013 | 2.9858 -3.3404 | 3.4065 -3.8760 | | 828 | 2.2250 -2.4137 | 2.6314 -2.8994 | 2.9876 -3.3379 | 3.4090 -3.8726 | | 840 | 2.2260 -2.4124 | 2.6328 -2.8975 | 2.9894 -3.3354 | 3.4113 -3.8693 | | 860 | 2.2270 -2.4111 | 2.6342 -2.8958 | 2.9912 -3.3331 | 3.4136 -3.8662 | | 880 | 2.2279 -2.4099 | 2.6355 -2.8941 | 2.9929 -3.3308 | 3.4158 -3.8632 | | 911 | 2.2288 -2.4088 | 2.6367 -2.8924 | 2. 9945 -3.3287 | 3.4180 -3.8603 | | 920 | 2.2297 -2.4077 | 2.6380 -2.8908 | 2.9961 -3.3266 | 3.4200 -3.8574 | | 940 | 2. 2305 -2.4056 | 2.6391 -2.8393 | 2.9976 -3.3245 | 3.4220 -3.8547 | | , TU | FA FAAN FA 4ANO | T4001 | | | TABLE 12. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU) FOR ALPHA = 1.90, 0.95, 0.975, AND 0.99 P=.95 UPPER 8 CUND = (E+A*Z)/(C*(D+Z)), LOWER BOUND = (8-A*Z)/(C*(D-Z)) (Z VALUES ARE STANCARD NORMAL VALUES FOR ALPHA) | SAMPLE | ALPHA = G.9G | ALPHA = 1.95 | ALPHA = 0.975 | ALPHA = 0.99 | |------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | BOUND BOUND | GNUOB GNUOB | DUND BOUND | BCUND BOUND | | 38 | 1.9173 -2.9868 | 2.2088 -3.7591 | 2.4522 -4.5226 | 2.7265 -5.5522 | | 46 | 1.9561 -2.8595 | 2.2623 -3.5645 | 2.5198 -4.2481 | 2.8121 -5.1501 | | 5 0 | 1.9842 -2.7804 | 2.3011 -3.4450 | 2.5689 -4.0820 | 2.8744 -4.9112 | | 6 C | 2.0057 -2.7256 | 2.3309 -3.3636 | 2.6068 -3.9688 | 2.9226 -4.7502 | | 61 | 2.0076 -2.7216 | 2.3335 -3.3561 | 2.6101 -3.9594 | 2.9269 -4.7369 | | 62 | 2.0095 -2.7165 | 2.3361 -3.3495 | 2.6134 -3.9503 | 2.9311 -4.7240 | | 63
64 | 2.0113 -2.7122 | 2.3386 -3.3430 | 2.6166 -3.9414 | 2.9351 -4.7115 | | 65 | 2.0131 -2.7086
2.0148 -2.7039 | 2.3411 -3.3367
2.3435 -3.3366 | 2.6197 -3.9328 | 2.9391 -4.6993 | | 66 | 2.0165 -2.6999 | 2.3458 -3.3247 | 2.6228 -3.9244
2.6258 -3.9163 | 2.9433 -4.6875 | | 67 | 2.0182 -2.6960 | 2.3482 -3.3189 | 2.6287 -3.9084 | 2.9468 -4.6769
2.9506 -4.6649 | | 68 | 2.0198 -2.6922 | 2.3504 -3.3133 | 2.6316 +3.9007 | 2.9543 -4.6540 | | 69 | 2.0214 -2.6865 | 2.3527 -3.3078 | 2.6344 -3.8932 | 2.9579 -4.6435 | | 70 | 2.0230 -2.6849 | 2.3548 -3.3024 | 2.6372 -3.8859 | 2.9615 -4.6332 | | 71 | 2.0246 -2.6814 | 2.3570 -3.2972 | 2.6400 -3.8797 | 2.9650 -4.6232 | | 72 | 2.0261 -2.6780 | 2.3591 -3.2922 | 2.6426 -3.8718 | 2.9684 -4.6134 | | 73 | 2.1:276 -2.6747 | 2.3612 -3.2872 | 2.6453 -3.8650 | 2.9718 -4.6039 | | 74 | 2.0290 -2.6714 | 2.3632 -3.2324 | 2.6479 -3.8584 | 2.9751 -4.5947 | | 75 | 2.6305 -2.6682 | 2.3652 -3.2776 | 2.6504 -3.8520 | 2.9783 -4.5856 | | 76
77 | 2.0319 -2.6651 | 2.3672 -3.2730 | 2.6529 -3.8457 | 2.9815 -4.5768 | | 7 7
7 8 | 2.0333 -2.6620
2.0346 -2.6591 | 2.3691 -3.2685 | 2.6553 -3.8395 | 2.9846 -4.5682 | | 7 0
79 | 2.0360 -2.6562 | 2.3710 -3.2641
2.3728 -3.2598 | 2.6578 -3.8335
2.6601 -3.8276 | 2.9877 -4.5598 | | 80 | 2.0373 -2.6533 | 2.3747 -3.2556 | 2.6625 -3.8219 | 2.9908 -4.5515
2.9937 -4.5435 | | 81 | 2.0386 -2.6505 | 2.3765 -3.2515 | 2.6648 -3.8163 | 2.9967 -4.5357 | | 82 | 2.5399 -2.6478 | 2.3782 -3.2474 | 2.6670 -3.5108 | 2.9996 -4.5280 | | 83 | 2.0411 -2.6451 | 2.3801 -3.2435 | 2.6692 -3.8054 | 3.0024 -4.5295 | | 84 | 2.0424 -2.6425 | 2.3817 -3.2396 | 2.6714 -3.8002 | 3.0652 -4.5131 | | 85 | 2.0436 -2.6400 | 2.3834 -3.2358 | 2.6736 -3.7950 | 3.0080 -4.5060 | | 86 | 2.8448 -2.6374 | 2.3850 -3.2321 | 2.6757 -3.790C | 3.0107 -4.4989 | | 57 | 2.0459 -2.6355 | 2.3867 -3.2285 | 2.6778 -3.7850 | 3.0133 -4.4920 | | 88 | 2.0471 -2.6326 | 2.3883 -3.2249 | 2.6798 -3.7802 | 3.0160 -4.4853 | | 89 | 2.0482 -2.6302 | 2.3899 -3.2214 | 2.6819 -3.7754 | 3.0186 -4.4787 | | 90 | 2.0494 -2.6279 | 2.3914 -3.2180 | 2.6838 -3.7768 | 3.0211 -4.4722 | | 9 1
92 | 2.0505 -2.6256
2.0516 -2.6234 | 2.393(-3.2146 | 2.6858 -3.7662 | 3.0236 -4.4658 | | 93 | 2.0527 -2.6212 | 2.3945 -3.2114
2.3960 -3.2081 | 2.6877 -3.7617 | 3.0261 -4.4596 | | 94 | 2.1537 -2.6190 | 2.3975 -3.2049 | 2.6897 -3.7574
2.6915 -3.7530 | 3.0286 -4.4535
3.0310 -4.4475 | | 95 | 2.0548 -2.6159 | 2.3989 -3.2018 | 2.6934 -3.7488 | 3.0334 -4.4416 | | 100 | 2.0598 -2.6059 | 2.4359 -3.1871 | 2.7023 -3.7238 | 3.0448 -4.4138 | | 120 | 2.0769 -2.5740 | 2.4297 -3.1387 | 2.7327 -3.6635 | 3.0838 -4.3234 | TABLE 12.-CONTINUED | SAMPLE | ALPHA = 0.96 | ALPHA = \$.95 | ALPHA = 0.975 | ALPHA = 0.99 | |------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | DANDB DANDE | BOUND BOUND | GO UND 3 OUND | 9 OUND BOUND | | 140 | 2.0938 -2.5534 | 2.4525 -3.1676 | 2.7613 -3.6206 | 3.1200 -4.2631 | | 160 | 2.1046 -2.5333 | 2.4676 -3.0784 | 2.7807 -3.5814 | 3.1452 -4.2095 | | 1 30 | 2.1136 -2.5170 | 2.4804 -3.3549 | 2.7972 -3.5498 | 3.1664 -4.1663 | | 200 | 2.1214 -2.5035 | 2.4913 -3.0351 | 2.8113 -3.5236 | 3.1847 -4.1306 | | 228 | 2.1282 -2.4920 | 2.5009 -3.0185 | 2.8235 -3.5015 | 3.2006 -4.1005 | | 240 | 2.1342 -2.4821 | 2.5093 -3.0042 | 2.8344 -3.4824 | 3.2147 -4.0746 | | 260 | 2.1396 -2.4734 | 2.5168 -2.9917 | 2.8441 -3.4658 | 3.2273 -4.0521 | | 280 | 2.1444 -2.4658 | 2.5235 -2.9807 | 2.8528 -3.4512 | 3.2386 -4.0323 | | 379 | 2.1487 -2.4590 | 2.5296 -2.9710 | 2.8617 -3.4382 | 3.2488 -4.6147 | | 320 | 2.1527 -2.4529 | 2.5352 -2.9622 | 2.8678 -3.4266 | 3.2582 -3.9990 | | 340 | 2.1563 -2.4474 | 2.5403 -2.9543 | 2.8744 -3.4161 | 3.2667 -3.9848 | | 36 0 | 2.1596 -2.4424 | 2.5450 -2.9471 | 2.8805 -3.4065 | 3.2746 -3.9719 | | 380 | 2.1627 -2.4379 | 2.5493 -2.9405 | 2.8861 -3.3978 | 3.2820 -3.9601 | | 400 | 2.1656 -2.4336 | 2.5534 -2.9344 | 2.8913 -3.3897 | 3.2887 -3.9493 | | 420 | 2.1683 -2.4298 | 2.5571 -2.9288 | 2.8962 -3.3823 | 3.2951 -3.9393 | | 443 | 2.1708 -2.4262 | 2.5606 -2.9237 | 2.9347 -3.3755 | 3.3010 -3.9301 | | 460 | 2.1731 -2.4228 | 2.5639 -2.9189 | 2.9ù50 -3.3691 | 3.3666 -3.9215 | | 480 | 2.1753 -2.4197 | 2.5670 -2.9144 | 2.9090 -3.3632 | 3.3118 -3.9135 | | 500 | 2.1774 -2.4168 | 2.5699 -2.9102 | 2.9128 -3.3576 | 3.3167 -3.9060 | | 526 | 2.1793 -2.4140 | 2.5727 -2.9462 | 2.9163 -3.3524 | 3.3214 -3.8990 | | 540 | 2.1812 -2.4114 | 2.5.53 -2.9025 | 2.9197 -3.3475 | 3.3258 -3.8924 | | 560 | 2.1929 -2.409u | 2.5778 -2.8990 | 2.9229 -3.3429 | 3.3300 -3.8862 | | 580 | 2.1846 -2.4067 | 2.5802 -2.8957 | 2.9260 -3.3386 | 3.3340 -3.8804 | | 600 | 2.1962 -2.4045 | 2.5824 -2.8926 | 2.9289 -3.3344 | 3.3378 -3.8748 | | 620 | 2.1877 -2.4025 | 2.5846 -2.8897 | 2.9317 -3.3305 | 3.3414 -3.8696 | | 640 | 2.1892 -2.4005 | 2.5866 -2.8868 | 2.9343 -3.3268 | 3.3449 -3.8646 | | 660 | 2.1906 -2.3986 | 2.5886 -2.8842 | 2.9369 -3.3233 | 3.3482 -3.8599 | | 6 5 0
7 0 9 | 2.1919 -2.3968 | 2.5904 -2.8816
2.5922 -2.8792 | 2.9393 -3.3199
2.9416 -3.3167 | 3.3514 -3.8553
3.3544 -3.8510 | | 72 0 | 2.1932 -2.3951
2.1944 -2.3935 | 2.5939 -2.8768 | 2.9438 -3.3136 | 3.3573 -3.8469 | | 740 | | 2.5956 -2.8746 | 2.9460 -3.3107 | 3.36G1 -3.8439 | | 74 0
76 0 | 2.1956 -2.3920
2.1967 -2.3965 | 2.5972 -2.8725 | 2.9481 -3.3079 | 3.3628 -3.8392 | | 780 | 2.1978 -2.3890 | 2.5987 -2.8764 | 2.9500 -3.3052 | 3.3654 +3.8356 | | 800 | 2.1988 -2.3877 | 2.6002 -2.8685 | 2.9520 -3.3026 | 3.3679 -3.8321 | | 820 | 2.1999 -2.3863 | 2.6116 -2.8666 | 2.9538 -3.3071 | 3.3704 -3.8287 | | 840 | 2.2008 -2.3851 | 2.6031 -2.8647 | 2.9556 -3.2977 | 3.3727 -3.8255 | | 860 | 2.2018 -2.3838 | 2.6044 -2.8639 | 2.9573 -3.2954 | 3.3750 -3.8224 | | 880 | 2.2027 -2.3827 | 2.6056 -2.8613 | 2.9590 -3.2931 | 3.3772 -3.8194 | | 900 | 2.2036 -2.3815 | 2.6069 -2.8597 | 2.9666 -3.2910 | 3.3793 -3.8166 | | 920 | 2.2044 -2.3804 | 2.6081 -2.8581 | 2.9622 -3.2839 | 3.3813 -3.8138 | | 940 | 2.2053 -2.3794 | 2.6093 -2.8566 | 2.9637 -3.2869 | 3.3833 -3.8111 | | 744 | 22 E 2 O E 2 O 1 3 T | 240970 280700 | 23 700. 002007 | | TABLE 13. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT + MU)/S(MU) FOR ALPHA =0.91, 0.95, 0.975, AND 0.99 p = 975 UPPER BOUND = (8+A*Z)/(C*(D+Z)), LOWER BOUND = (8-A*Z)/(C*(D-Z)) (Z VALUES ARE STANCARD NORMAL VALUES FOR ALPHA) | SAMPLE | ALPHA = 0.90 | ALPHA = 2.95 | ALPHA = 0.975 | ALPHA = C.99 | |------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | 30UND BOUND | BOUND BOUND | BOUND BOUND | 3 OUND BOUND | | | | | | | | 30 | 1.8927 -2.9485 | 2.1805 -3.7110 | 2.4247 -4.4646 | 2.6915 -5.4811 | | 40 | 1.9313 -2.8233 | 2.2337 -3.5193 | 2.4879 -4.1943 | 2.7764 -5.0849 | | 50 | 1. 9592 - 2. 7454 | 2.2721 -3.4817 | 2.5366 -4.0307 | 2.8382 -4.8494 | | 60 | 1.9866 -2.6915 | 2.3017 -3.32(9 | 2.5741 -3.9191 | 2.8860 -4.6937 | | 61 | 1.9825 -2.6869 | 2.3043 -3.3141 | 2.5774 -3.9099 | 2.8902 -4.6776 | | 62 | 1.9843 -2.6825 | 2.3068 -3.3975 | 2.5807 -3.9008 | 2.8943 -4.6649 | | 63 | 1.9361 -2.6783 | 2.3093 -3.3012
2.3118 -3.2950 | 2.5838 -3.8921
2.5869 -3.8836 | 2.8984 -4.6525
2.9823 -4.6405 | | 6 4
65 | 1.9879
-2.6741
1.9896 -2.6741 | 2.3142 -3.2890 | 2.5900 -3.8754 | 2.9062 -4.6289 | | 66 | 1.9913 -2.6661 | 2.3165 -3.2931 | 2.5929 -3.8673 | 2.9100 -4.6176 | | 67 | 1.9930 -2.6623 | 2.3188 -3.2774 | 2.5959 -3.8595 | 2.9137 -4.6066 | | 68 | 1.9946 -2.6586 | 2.3211 -3.2719 | 2.5987 -3.8519 | 2.9174 -4.5959 | | 69 | 1.9962 -2.6550 | 2.3233 -3.2665 | 2.6015 -3.8445 | 2.9210 -4.5855 | | 70 | 1.9977 -2.6514 | 2.3254 -3.2612 | 2.6043 -3.8373 | 2.9245 -4.5753 | | 71 | 1.9993 -2.6486 | 2.3276 -3.2561 | 2.6070 -3.8303 | 2.9279 -4.5655 | | 72 | 2.00082.6446 | 2.3297 -3.2511 | 2.6097 -3.8235 | 2.9313 -4.5559 | | 73 | 2.0023 -2.6413 | 2.3317 -3.2462 | 2.6123 -3.8168 | 2.9347 -4.5465 | | 74 | 2.0037 -2.6381 | 2.3337 -3.2414 | 2.6148 -3.8183 | 2.9379 -4.5373 | | 75 | 2.0051 -2.6349 | 2.3357 -3.2368 | 2.6173 -3.3039 | 2.9412 -4.5284 | | 76 | 2.0065 -2.6319 | 2.3370 -3.2322 | 2.6198 -3.7977 | 2.9443 -4.5197 | | 77 | 2.0079 -2.6239 | 2.3395 -3.2278 | 2.6222 -3.7917 | 2.9474 -4.5112 | | 78 | 2.0093 -2.6259 | 2.3414 -3.2234 | 2.6246 -3.7857 | 2.9505 -4.5029 | | 79 | 2.[106 -2.6231 | 2.3433 -3.2192
2.3451 -3.2150 | 2.6278 -3.7808
2.6293 -3.7743 | 2.9535 -4.4948
2.9564 -4.4869 | | ዓ0
ዓ 1 | 2,0119 -2.6203
2.0132 -2.6175 | 2.3469 -3.2110 | 2.6316 -3.7688 | 2.9594 -4.4792 | | 82 | 2.0145 -2.6148 | 2.3486 -3.2070 | 2.6338 -3.7633 | 2.9622 -4.4716 | | 53 | 2.0157 -2.6122 | 2.3503 -3.2031 | 2.6369 -3.7580 | 2.9650 -4.4642 | | 84 | 2.0169 -2.6096 | 2.3520 -3.1993 | 2.6382 -3.7529 | 2.9678 -4.4570 | | 85 | 2.6181 -2.6071 | 2.3537 -3.1956 | 2.6403 -3.7478 | 2.9705 -4.4499 | | 96 | 2.0193 -2.6046 | 2.3554 -3.1919 | 2.6424 -3.7428 | 2.9732 -4.4430 | | 37 | 2.0205 -2.6022 | 2.3576 -3.1983 | 2.6445 -3.7 379 | 2.9759 -4.4362 | | 38 | 2.6216 -2.5998 | 2.3586 -3.1848 | 2.6465 -3.7332 | 2.9785 -4.4295 | | 39 | 2.0228 -2.5975 | 2.3601 -3.1814 | 2.6485 -3.7285 | 2.9810 -4.4230 | | 90 | 2.0239 -2.5952 | 2.3617 -3.1780 | 2.6545 -3.7239 | 2.9836 -4.4166 | | 91 | 2.0250 -2.5930 | 2.3632 -3.1747 | 2.6524 -3.7194 | 2.9861 -4.4193 | | 92 | 2.0261 -2.5908 | 2.3647 -3.1714 | 2.6543 -3.7150 | 2.9885 -4.4042 | | 93 | 2.6271 -2.5836 | 2.3662 -3.1683 | 2.6562 -3.7107 | 2.9909 -4.3982 | | 94 | 2. 4282 -2.5865 | 2.3677 -3.1651 | 2.6581 -3.7064
2.6599 -3.7023 | 2.9933 -4.3923
2.9957 -4.3865 | | 95 | 2.0292 -2.5844 | 2.3691 -3.1621
2.3761 -3.1475 | 2.6687 -3.6825 | 3.0070 -4.3590 | | 130
120 | 2.0342 -2.5745
2.0512 -2.5421 | 2.3996 -3.1999 | 2.6988 -3.6181 | 3.0456 -4.2699 | | ICU | 20 8315 -203451 | E-0330 -046334 | 5.0300 -3.0101 | 3-4-50 -4-6033 | TABLE 13.-CONTINUED | SAMPLE | ALPHA = 0.90 | ALPHA = C.95 | ALPHA = 0.975 | ALPHA = 0.99 | |--------------|----------------------------------|----------------------------------|--------------------|----------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | BOUND BOUND | BOUND BOUND | BOUND BOUND | | | | | 300110 | SOUND SOUND | BOUND BOUND | | 140 | 2.0681 -2.5222 | 2.4225 -3.0696 | 2.7275 -3.5763 | 3.0818 -4.2109 | | 160 | 2.0788 -2.5023 | 2.4374 -3.0467 | 2.7467 -3.5376 | 3.1066 -4.1580 | | 180 | 2.0878 -2.4862 | 2.4500 -3.0174 | 2.7629 -3.5064 | 3.1276 -4.1153 | | 200 | 2.0955 -2.4728 | 2.4608 -2.9980 | 2.7768 -3.4895 | 3.1457 -4.0801 | | 220 | 2.1022 -2.4615 | 2.4702 -2.9816 | 2.7890 -3.4586 | 3.1614 -4.0503 | | 240 | 2.1981 -2.4517 | 2.4786 -2.9674 | 2.7997 -3.4398 | 3.1754 -4.0247 | | 2 6 C | 2.1134 -2.4432 | 2.4860 -2.9551 | 2.8093 -3.4234 | 3.1878 -4.0025 | | 2 50 | 2.1181 -2.4356 | 2.4926 -2.9443 | 2.8179 -3.4096 | 3.1989 -3.983n | | 300 | 2.1224 -2.4239 | 2.4987 -2.9346 | 2.8256 -3.3961 | 3.2091 -3.9656 | | 320 | 2.1263 -2.4229 | 2.5041 -2.9259 | 2.8327 -3.3846 | 3.2183 -3.950G | | 340 | 2.1299 -2.4175 | 2.5092 -2.9181 | 2.8392 -3.3742 | 3.2268 -3.9360 | | 3 60 | 2.1332 -2.4125 | 2.5138 -2.9110 | 2.8452 -3.3648 | 3.2346 -3.9232 | | 380 | 2.1362 -2.4080 | 2.5181 -2.9545 | 2.8508 -3.3562 | 3.2418 -3.9116 | | 438 | 2.1391 -2.4039 | 2.5221 -2.8985 | 2.8559 -3.3483 | 3.2485 -3.9009 | | 420 | 2.1417 -2.4000 | 2.5258 -2.8938 | 2.8607 -3.3409 | 3.2547 -3.8911 | | 440 | 2.1442 -2.3965 | 2.5293 -2.8879 | 2.8652 -3.3342 | 3.2606 -3.8820 | | 460 | 2.1465 -2.3932 | 2.5325 -2.8831 | 2.8694 -3.3279 | 3.2661 -3.8735 | | 480 | 2.1487 -2.3901 | 2.5356 -2.8787 | 2.8734 -3.3220 | 3.2713 -3.8656 | | 500 | 2.1507 -2.3872 | 2.5385 -2.8745 | 2.8771 -3.3165 | 3.2761 -3.8582 | | 520 | 2.1527 -2.3845 | 2.5412 -2.8767 | 2.8886 -3.3114 | 3.2807 -3.8513 | | 540 | 2.1545 -2.3819 | 2.5438 -2.8679 | 2.8840 -3.3066 | 3.2851 -3.8448 | | 560 | 2.1562 -2.3795 | 2.5462 -2.8635 | 2.8872 -3.3020 | 3.2892 -3.8387 | | 580 | 2.1579 -2.3772 | 2.5486 -2.8663 | 2.8902 -3.2977 | 3.2932 -3.8329 | | 600 | 2.1595 -2.3751 | 2.5508 -2.8572 | 2.8930 -3.2936 | 3.2969 -3.8274 | | 620 | 2.1619 -2.3731 | 2.5529 -2.8543 | 2.8958 -3.2898 | 3.3005 -3.8222 | | 640 | 2.1624 -2.3711 | 2.5549 -2.8515 | 2.8984 -3.2861 | 3.3039 -3.8173 | | 660 | 2.1638 -2.3693 | 2.5569 -2.8489 | 2.9039 -3.2826 | 3.3072 -3.8126 | | 580
780 | 2.1651 -2.3675 | 2.5587 -2.8463 | 2.9033 -3.2793 | 3.3103 -3.8081 | | 700
720 | 2.1663 -2.3658 | 2.5665 -2.8439 | 2.9056 -3.2761 | 3.3133 -3.8039 | | 740 | 2.1675 -2.3642 | 2.5622 -2.8416 | 2.9678 -3.2731 | 3.3162 -3.7998 | | 760 | 2.1687 -2.3627
2.1698 -2.3612 | 2.5638 -2.8394 | 2.9099 -3.2702 | 3.3190 -3.7959 | | 780 | 2.1709 -2.3598 | 2.5654 -2.8373 | 2.9120 -3.2674 | 3.3217 -3.7922 | | 800 | 2.1719 -2.3584 | 2.5669 -2.8353 | 2.9139 -3.2647 | 3.3242 -3.7886 | | 820 | 2.1729 -2.3571 | 2.5684 -2.8333 | 2.9158 -3.2621 | 3.3267 -3.7852 | | 840 | 2.1739 -2.3559 | 2.5698 -2.8315 | 2.9177 -3.2597 | 3.3291 -3.7819 | | 860 | 2.1748 -2.3547 | 2.5712 -2.8297 | 2.9194 -3.2573 | 3.3314 -3.7787 | | 850 | 2.1757 -2.3535 | 2.5725 -2.8279
2.5738 -2.8263 | 2.9211 -3.2550 | 3.3337 -3.7756 | | 900 | 2.1766 -2.3524 | 2.5750 -2.8247 | 2. 9228 -3. 2528 | 3.3358 -3.7727 | | 920 | 2.1775 -2.3513 | 2.5762 -2.8231 | 2.9244 -3.2507 | 3.3379 -3.7698 | | 940 | 2.1783 -2.3502 | 2.5773 -2.8216 | 2. 92 59 - 3. 2486 | 3.3399 -3.7671 | | , TU | 201100 2000 | 2.7113 -2.0210 | 2.9274 -3.2467 | 3.3419 -3.7644 | TABLE 14. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU) FOR ALPHA = 1.96, 0.95, 0.975, AND 0.99 p=.99 UPPER BCUND = (E+A*Z)/(C*(D+Z)), LOWER BOUND = (B-A*Z)/(C*(D-Z)) (Z VALUES ARE STANDARD NORMAL VALUES FOR ALPHA) | SAMPLE | ALPHA = 0.90 | ALPHA = 8.95 | ALPHA = 6.975 | ALPHA = 6.99 | |-----------|-----------------|----------------|----------------|----------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | 90UND BOUND | DANO8 CANO8 | BOUND BOUND | BOUND BOUND | | 30 | 1.8626 -2.9017 | 2.1458 -3.6520 | 2.3823 -4.3937 | 2.6488 -5.3940 | | 40 | 1.9008 -2.7788 | 2.1984 -3.4638 | 2.4487 -4.1282 | 2.7326 -5.0047 | | 50 | 1.9284 -2.7023 | 2.2364 -3.3483 | 2.4967 -3.9674 | 2.7936 -4.7733 | | 60 | 1.9496 -2.6493 | 2.2657 -3.2689 | 2.5338 -3.8578 | 2.8408 -4.6173 | | 61 | 1.9514 -2.6449 | 2.2682 -3.2623 | 2.5371 -3.8487 | 2.8450 -4.6044 | | 62 | 1.9533 -2.6446 | 2.2707 -3.2558 | 2.5463 -3.8398 | 2.8490 -4.5919 | | 63 | 1.9550 -2.6364 | 2.2732 -3.2496 | 2.5434 -3.8313 | 2.8530 -4.5798 | | 64 | 1. 9568 -2.6323 | 2.2756 -3.2435 | 2.5465 -3.8229 | 2.8569 -4.5680 | | 65 | 1.9585 -2.6283 | 2.2786 -3.2376 | 2.5495 -3.8148 | 2.8608 -4.5565 | | 66 | 1.9602 -2.6245 | 2.2803 -3.2318 | 2.5524 -3.3069 | 2.8645 -4.5454 | | 67 | 1.9518 -2.6247 | 2.2826 -3.2262 | 2.5553 -3.7992 | 2.8682 -4.5346 | | 68 | 1.9634 -2.6171 | 2.2848 -3.2268 | 2.5581 -3.7918 | 2.8718 -4.5241 | | 69 | 1.9650 -2.6135 | 2.2871 -3.2155 | 2.5609 -3.7845 | 2.8753 -4.5139 | | 70 | 1.9665 -2.6100 | 2.2891 -3.21(3 | 2.5635 -3.7774 | 2.8788 -4.5039 | | 71 | 1.9681 -2.6066 | 2.2912 -3.2053 | 2.5663 -3.7795 | 2.8822 -4.4942 | | 72 | 1.9695 -2.6033 | 2.2933 -3.2063 | 2.5689 -3.7638 | 2.8856 -4.4848 | | 73 | 1.9710 -2.6001 | 2.2953 -3.1955 | 2.5715 -3.7572 | 2.8889 -4.4755 | | 74 | 1.9724 -2.5969 | 2.2973 -3.1919 | 2.5740 -3.7508 | 2.8921 -4.4666 | | 75 | 1.9739 -2.5938 | 2.2992 -3.1863 | 2.5765 -3.7446 | 2.8953 -4.4578 | | 76 | 1.9752 -2.5908 | 2.3012 -3.1813 | 2.5789 -3.7385 | 2.8984 -4.4492 | | 77 | 1.9766 -2.5879 | 2.3031 -3.1774 | 2.5813 -3.7325 | 2.9015 -4.4409 | | 78 | 1.9779 -2.5850 | 2.3049 -3.1732 | 2.5837 -3.7267 | 2.9045 -4.4327 | | 79 | 1.9793 -2.5822 | 2.3067 -3.1690 | 2.5860 -3.7210 | 2.9074 -4.4248 | | 50 | 1.9805 -2.5794 | 2.3085 -3.1649 | 2.5883 -3.7155 | 2.9104 -4.4170 | | 31 | 1.9818 -2.5767 | 2.3103 -3.1669 | 2.5905 -3.7130 | 2.9132 -4.4094 | | 82 | 1.9831 -2.5741 | 2.312(-3.1570 | 2.5928 -3.7047 | 2.9160 -4.4019 | | 83 | 1.9843 -2.5715 | 2.3137 -3.1532 | 2.5949 -3.6995 | 2.9188 -4.3947 | | 94 | 1.9855 -2.5690 | 2.3154 -3.1495 | 2.5971 -3.6944 | 2.9216 -4.3875 | | 85 | 1.9867 -2.5665 | 2.3176 -3.1458 | 2.5992 -3.6894 | 2.9243 -4.3806 | | 86 | 1.9879 -2.5641 | 2.3187 -3.1422 | 2.6012 -3.6845 | 2.9269 -4.3738 | | 87 | 1.9890 -2.5617 | 2.3203 -3.1387 | 2.6033 -3.6797 | 2.9295 -4.3671 | | 8.8 | 1.9902 -2.5593 | 2.3218 -3.1352 | 2.6053 -3.6750 | 2.9321 -4.3605 | | 99 | 1.9913 -2.5571 | 2.3234 -3.1319 | 2.6673 -3.6704 | 2.9346 -4.3541 | | 90 | 1.9924 -2.5548 | 2.3249 -3.1285 | 2.6092 -3.6659 | 2.9371 -4.3478 | | 91 | 1.9935 -2.5526 | 2.3264 -3.1253 | 2.6111 -3.6615 | 2.9396 -4.3417 | | 92 | 1.9945 -2.5584 | 2.3279 -3.1221 | 2.6130 -3.6572 | 2.9420 -4.3356 | | 93 | 1.9956 -2.5483 | 2.3294 -3.1193 | 2.6149 -3.6529 | 2.9444 -4.3297 | | 94 | 1.9966 -2.5462 | 2.3308 -3.1159 | 2.6167 -3.6487 | 2.9467 -4.3239 | | 95 | 1.9977 -2.5442 | 2.3322 -3.1129 | 2.6185 -3.6446 | 2.9491 -4.3182 | | 100 | 2.0026 -2.5345 | 2.3391 -3.0985 | 2.6272 -3.6252 | 2.9602 -4.2913 | | 120 | 2.0193 -2.5026 | 2.3623 -3.0517 | 2.6569 -3.5619 | 2.9984 -4.2036 | TABLE 14.-CONTINUED | SAMPLE | ALPHA = 0.90 | ALPHA = [.95 | ALPHA = G.975 | ALPHA = 0.99 | |----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE
 UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | ONUOB GNUOB | BOUND BOUND | BOUND BOUND | BOUND BOUND | | | | | | | | 140 | 2.0363 -2.4833 | 2.3852 -3.0223 | 2.6855 -3.5212 | 3.0344 -4.1461 | | 160 | 2.0468 -2.4638 | 2.3999 -2.9939 | 2.7044 -3.4831 | 3.0588 -4.3940 | | 1 80 | 2.0556 -2.4479 | 2.4123 -2.9769 | 2.7204 -3.4524 | 3.0795 -4.0520 | | 200 | 2.0632 -2.4347 | 2.4229 -2.9518 | 2.7341 -3.4269 | 3.0972 -4.0172 | | 220 | 2.698 -2.4236 | 2.4322 -2.9357 | 2.7460 -3.4053 | 3.1128 -3.9879 | | 240 | 2.0756 -2.4139 | 2.4404 -2.9217 | 2.7566 -3.3868 | 3.1265 -3.9628 | | 260 | 2.0808 -2.4055 | 2.4477 -2.9396 | 2.7660 -3.3767 | 3.1387 -3.9409 | | 23 0
300 | 2.0855 -2.3951 | 2.4542 -2.8989 | 2.7745 -3.3565 | 3.1497 -3.9216 | | 320 | 2.0897 +2.3915 | 2.4602 -2.8894 | 2.7821 -3.3438 | 3.1596 -3.9045 | | 340 | 2.0936 -2.3856
2.0971 -2.3802 | 2.4656 -2.88[9
2.4705 -2.8732 | 2.7891 -3.3325 | 3.1687 -3.8892 | | 360 | 2.1003 -2.3754 | 2.4751 -2.8662 | 2.7955 -3.3223 | 3.1771 -3.8754 | | 380 | 2.1033 -2.3709 | 2.4793 -2.8597 | 2.8014 -3.3130
2.8069 -3.3045 | 3.1847 -3.8628 | | 400 | 2.1061 -2.3668 | 2.4832 -2.8539 | 2.8119 -3.2967 | 3.1918 -3.8514
3.1984 -3.8418 | | 420 | 2.1087 -2.3631 | 2.4869 -2.8484 | 2.8167 -3.2895 | 3.2046 -3.8311 | | 440 | 2.1111 -2.3595 | 2.4903 -2.8434 | 2.8211 -3.2828 | 3.2104 -3.8222 | | 460 | 2.1134 -2.3563 | 2.4935 -2.8387 | 2.8252 -3.2766 | 3.2158 -3.8138 | | 480 | 2.1156 -2.3533 | 2.4965 -2.8344 | 2.8291 -3.2719 | 3.2209 -3.8061 | | 580 | 2.1176 -2.3584 | 2.4994 -2.8363 | 2.8328 -3.2655 | 3.2257 -3.7988 | | 520 | 2.1195 -2.3477 | 2.5821 -2.8264 | 2.8363 -3.2604 | 3.2302 -3.7920 | | 540 | 2.1213 -2.3452 | 2.5446 -2.8228 | 2.8395 -3.2556 | 3.2345 -3.7856 | | 568 | 2.1230 -2.3429 | 2.5070 -2.8194 | 2.8427 -3.2512 | 3.2386 -3.7795 | | 5 5 8 | 2.1246 -2.3406 | 2.5093 -2.8162 | 2.8457 -3.2469 | 3.2425 -3.7739 | | 6 98 | 2.1262 -2.3385 | 2.5115 -2.8132 | 2.9485 -3.2429 | 3.2461 -3.7685 | | 62 0 | 2.1277 -2.3365 | 2.5136 -2.8183 | 2.8512 -3.2391 | 3.2497 -3.7634 | | 640 | 2.1291 -2.3346 | 2.5156 -2.8076 | 2.8538 -3.2355 | 3.2530 -3.7585 | | 660 | 2.1304 -2.3328 | 2.5175 -2.8050 | 2.8562 -3.2320 | 3.2563 -3.7539 | | 690 | 2.1317 -2.3310 | 2.5193 -2.8025 | 2.8586 -3.2288 | 3.2593 -3.7495 | | 700 | 2.1339 -2.3294 | 2.5211 -2.8001 | 2.8608 -3.2256 | 3.2623 -3.7453 | | 720 | 2.1342 -2.3278 | 2.5227 -2.7979 | 2.8630 -3.2226 | 3.2651 -3.7413 | | 740 | 2.1353 -2.3263 | 2.5243 -2.7957 | 2.8651 -3.2198 | 3.2679 -3.7375 | | 76 0
78 0 | 2.1364 -2.3248 | 2.5259 -2.7936 | 2.8671 -3.2170 | 3.2705 -3.7338 | | 7 3U
8 0 D | 2.1375 -2.3234 | 2.5274 -2.7916 | 2.8690 -3.2144 | 3.2730 -3.7303 | | 820 | 2.1385 -2.3221
2.1395 -2.3288 | 2.5288 -2.7897
2.5302 -2.7879 | 2.8709 -3.2119
2.8727 -3.2095 | 3.2755 -3.7269 | | 846 | 2.1404 -2.3196 | 2.5316 -2.7861 | 2.8745 -3.2071 | 3.2778 -3.7236 | | 860 | 2.1413 -2.3184 | 2.5329 -2.7844 | 2.8761 -3.2049 | 3.2801 -3.7205
3.2823 -3.7175 | | 880 | 2.1422 -2.3172 | 2.5341 -2.7827 | 2.8778 -3.2027 | 3.2844 -3.7146 | | 900 | 2.1431 -2.3161 | 2.5353 -2.7812 | 2.8793 -3.2006 | 3.2865 -3.7118 | | 920 | 2.1439 -2.3151 | 2.5365 -2.7796 | 2.8809 -3.1986 | 3.2885 -3.7391 | | 948 | 2.1447 -2.3140 | 2.5376 -2.7781 | 2.8823 -3.1967 | 3.2904 -3.7065 | | - • • | | | 20020 002701 | 001 JUT 001 007 | TABLE 15. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU) FOR ALPHA =0.90, 0.95, 0.975, AND 0.99 p=.995 UPPER BCUND = (8+A+Z)/(C+(D+Z)), LOWER BOUND = (8-A+Z)/(C+(D-Z)) (Z VALUES ARE STANDARD NORMAL VALUES FOR ALPHA) | SAMPLE | ALPHA = 0.90 | ALPHA = C.95 | ALPHA = 0.975 | ALPHA = 0.99 | |------------|-----------------|----------------|----------------|----------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | GOUND BOUND | BOUND BOUND | BOUND BOUND | GNU OR ON UO E | | 30 | 1.8422 -2.870ù | 2.1224 -3.6122 | 2.3562 -4.3458 | 2.6198 -5.3351 | | 40 | 1.8892 -2.7486 | 2.1746 -3.4262 | 2.4221 -4.0834 | 2.7030 -4.9504 | | 50 | 1.9075 -2.6731 | 2.2122 -3.3121 | 2.4697 -3.9245 | 2.7634 -4.7216 | | 6 0 | 1. 9285 -2.6288 | 2.2412 -3.2336 | 2.5065 -3.8162 | 2.8101 -4.5675 | | 61 | 1.9304 -2.6164 | 2.2438 -3.2271 | 2.5097 -3.8072 | 2.8143 -4.5548 | | 62 | 1.9322 -2.6121 | 2.2462 -3.2267 | 2.5129 -3.7984 | 2.8183 -4.5424 | | 63 | 1.9339 -2.6080 | 2.2487 -3.2145 | 2.5160 -3.7899 | 2.8222 -4.5304 | | 64 | 1.9357 -2.6039 | 2.2511 -3.2385 | 2.5190 -3.7817 | 2.8261 -4.5187 | | 65 | 1.9374 -2.6000 | 2.2534 -3.2027 | 2.5220 -3.7737 | 2.8299 -4.5074 | | 66 | 1.9390 -2.5962 | 2.2557 -3.1979 | 2.5249 -3.7659 | 2.8336 -4.4964 | | 67 | 1.9407 -2.5925 | 2.2580 -3.1915 | 2.5277 -3.7583 | 2.8373 -4.4857 | | 68 | 1.9422 -2.5889 | 2.2692 -3.1961 | 2.5346 -3.7509 | 2.8408 -4.4753 | | 69 | 1.9438 -2.5853 | 2.2623 -3.1808 | 2.5333 -3.7437 | 2.8444 -4.4652 | | 78 | 1.9453 -2.5819 | 2.2645 -3.1757 | 2.5360 -3.7367 | 2.8478 -4.4554 | | 71 | 1.94692.5785 | 2.2665 -3.1717 | 2.5386 -3.7299 | 2.8512 -4.4458 | | 72 | 1.9483 -2.5753 | 2.2686 -3.1659 | 2.5412 -3.7233 | 2.8545 -4.4364 | | 73 | 1.9498 -2.5721 | 2.2706 -3.1611 | 2.5438 -3.7168 | 2.8577 -4.4273 | | 74 | 1.9512 -2.5693 | 2.2726 -3.1565 | 2.5463 -3.7105 | 2.8609 -4.4185 | | 75 | 1.9526 -2.5659 | 2.274! -3.1520 | 2.5488 -3.7043 | 2.8641 -4.4098 | | 76 | 1.9540 -2.5629 | 2.2764 -3.1476 | 2.5512 -3.6992 | 2.8672 -4.4013 | | 77 | 1.9553 -2.5600 | 2.2783 -3.1432 | 2.5535 -3.6924 | 2.8702 -4.3931 | | 78 | 1.9566 -2.5572 | 2.2801 -3.1390 | 2.5559 -3.6866 | 2.8732 -4.3850 | | 79 | 1.9579 -2.5544 | 2.2819 -3.1349 | 2.5582 -3.6816 | 2.8761 -4.3772 | | 80 | 1.9592 -2.5517 | 2.2337 -3.1309 | 2.5604 -3.6755 | 2.8790 -4.3695 | | 91 | 1.9605 -2.5490 | 2.2854 -3.1269 | 2.5627 -3.67J1 | 2.8819 -4.3619 | | 82 | 1.9617 -2.5464 | 2.2871 -3.1231 | 2.5649 -3.6648 | 2.8847 -4.3546 | | 93 | 1.9629 -2.5438 | 2.2888 -3.1193 | 2.5679 -3.6597 | 2.8874 -4.3474 | | 84 | 1.9641 -2.5413 | 2.2905 -3.1156 | 2.5691 -3.6547 | 2.8961 -4.3404 | | 35 | 1.9653 -2.5389 | 2.2921 -3.1123 | 2.5712 -3.6497 | 2.8928 -4.3335 | | 86 | 1.9665 -2.5365 | 2.2937 -3.1084 | 2.5733 -3.6449 | 2.8954 -4.3267 | | 87 | 1.9676 -2.5341 | 2.2953 -3.1049 | 2.5753 -3.6432 | 2.8989 -4.3201 | | 58 | 1.9688 -2.5318 | 2.2969 -3.1015 | 2.5773 -3.6355 | 2.9006 -4.3136 | | 39 | 1.9699 -2.5296 | 2.2984 -3.0982 | 2.5792 -3.6310 | 2.9031 -4.3073 | | 90 | 1.9710 -2.5273 | 2.2999 -3.0949 | 2.5812 -3.6265 | 2.9055 -4.3u11 | | 91 | 1.9720 -2.5252 | 2.3014 -3.0917 | 2.5831 -3.6222 | 2.9080 -4.2950 | | 92 | 1.9731 -2.5230 | 2.3029 -3.0885 | 2.5849 -3.6179 | 2.9104 -4.2890 | | 93 | 1.9741 -2.5209 | 2.3043 -3.0854 | 2.5868 -3.6137 | 2.9127 -4.2832 | | 94 | 1.9752 -2.5189 | 2.3058 -3.0824 | 2.5886 -3.6095 | 2.9151 -4.2774 | | 95 | 1.9762 -2.5168 | 2.3072 -3.0794 | 2.5904 -3.6055 | 2.9174 -4.2718 | | 100 | 1.9810 -2.5072 | 2.3139 -3.0653 | 2.5993 -3.5863 | 2.9284 -4.2452 | | 120 | 1.9976 -2.4758 | 2.3370 -3.0190 | 2.6284 -3.5237 | 2.9662 -4.1585 | TABLE 15 .- CONTINUED | SAMPLE | ALPHA = 0.90 | ALPHA = 8.95 | ALPHA = 0.975 | ALPHA = 0.99 | |----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | SIZE | UPPER LOWER | UPPER LOWER | UPPER LOWER | UPPER LOWER | | | BOUND BOUND | BOUND BOUND | BOUND BOUND | BOUND BOUND | | | | | 300,10 | SCOND SOUND | | 1 40 | 2.0146 -2.4569 | 2.3597 -2.9961 | 2.6569 -3.4837 | 3.0(20 -4.1019 | | 160 | 2.0249 -2.4375 | 2.3743 -2.9620 | 2.6756 -3.4460 | 3.0262 -4.0503 | | 1 50 | 2.0337 -2.4218 | 2.3865 -2.9392 | 2.6913 -3.4156 | 3.0466 -4.0088 | | 518 | 2. 9412 -2.4088 | 2.3971 -2.9204 | 2.7649 -3.3904 | 3.0642 -3.9744 | | 2 50 | 2.0477 -2.3977 | 2.4863 -2.9044 | 2.7167 -3.3690 | 3.0796 -3.9454 | | 240 | 2.4535 -2.3862 | 2.4144 -2.8906 | 2.7272 -3.3507 | 3.0931 -3.9205 | | 2 60 | 2.0586 -2.3799 | 2.4216 -2.8786 | 2.7365 -3.3347 | 3.1652 -3.8989 | | 280 | 2.0633 -2.3726 | 2.4281 -2.8680 | 2.7449 -3.3207 | 3.1161 -3.8798 | | 300 | 2.0674 -2.3660 | 2.4339 -2.8586 | 2.7524 -3.3682 | 3.1259 -3.8629 | | 320 | 2.0712 -2.3602 | 2.4393 -2.8502 | 2.7594 -3.2970 | 3.1349 -3.8477 | | 340 | 2.0747 -2.3549 | 2.4442 -2.8425 | 2.7657 -3.2868 | 3.1432 -3.8340 | | 360 | 2.0779 -2.3500 | 2.4487 -2.8356 | 2.7715 -3.2776 | 3.1508 -3.8216 | | 380 | 2.0809 -2.3456 | 2.4529 -2.8292 | 2.7769 -3.2692 | 3.1578 -3.8103 | | 40 0
420 | 2.0937 -2.3416 | 2.4568 -2.8234 | 2.7819 -3.2615 | 3.1643 -3.7999 | | 440 | 2.0862 -2.3378 | 2.4604 -2.8180 | 2.7866 -3.2544 | 3.1764 -3.7933 | | 46 G | 2.0986 -2.3344
2.0909 -2.3312 | 2.4638 -2.8131 | 2.7910 -3.2478 | 3.1761 -3.7814 | | 4 9 0 | 2.0930 -2.3282 | 2.4669 -2.8084 | 2.7951 -3.2417 | 3.1815 -3.7731 | | 500 | 2.0950 -2.3253 | 2.4699 -2.8041 | 2.7989 -3.2360 | 3.1865 -3.7655 | | 520 | 2.1969 -2.3227 | 2.4727 -2.30[1
2.4754 -2.7963 | 2.8026 -3.2336 | 3.1913 -3.7583 | | 540 | 2. 1987 -2. 3222 | 2.4779 -2.7927 | 2.8060 -3.2256 | 3.1957 -3.7515 | | 560 | 2.1004 -2.3179 | 2.4803 -2.7894 | 2.8093 -3.2209
2.8124 -3.2165 | 3.2000 -3.7452 | | 580 | 2.1320 -2.3157 | 2.4826 -2.7862 | 2.8153 -3.2123 | 3.2040 -3.7392 | | 600 | 2.1935 -2.3136 | 2.4847 -2.7832 | 2. 91.81 -3.20.83 | 3.2079 -3.7336
3.2115 -3.7283 | | 620 | 2.1350 -2.3116 | 2.4868 -2.7863 | 2.8208 -3.2045 | 3.2150 -3.7232 | | 640 | 2.1064 -2.3097 | 2.4897 -2.7776 | 2.8233 -3.2010 | 3.2183 -3.7184 | | 660 | 2.1077 -2.3079 | 2.4906 -2.7751 | 2.8257 -3.1976 | 3.2215 -3.7138 | | 680 | 2.1090 -2.3062 | 2.4924 -2.7726 | 2.8281 -3.1943 | 3.2246 -3.7095 | | 700 | 2.1102 -2.3045 | 2.4942 -2.7763 | 2.8303 -3.1912 | 3.2275 -3.7053 | | 720 | 2.1114 -2.3030 | 2.4958 -2.7680 | 2.8325 -3.1883 | 3.2303 -3.7014 | | 740 | 2.1125 -2.3615 | 2.4974 -2.7659 | 2.8345 -3.1854 | 3.2330 -3.6976 | | 760 | 2.1136 -2.3000 | 2.4989 -2.7638 | 2.8365 -3.1827 | 3.2356 -3.6940 | | 780 | 2.1147 -2.2987 | 2.5304 -2.7618 | 2.8384 -3.1811 | 3.2381 -3.6905 | | 800 | 2.1157 -2.2973 | 2.5018 -2.7599 | 2.8403 -3.1776 | 3.2405 -3.6871 | | 828 |
2.1166 -2.2961 | 2.5032 -2.7581 | 2.8421 -3.1752 | 3.2429 -3.6839 | | 840 | 2.1176 -2.2948 | 2.5046 -2.7564 | 2.8438 -3.1729 | 3.2451 -3.6808 | | 860 | 2.1185 -2.2937 | 2.5058 -2.7547 | 2.8455 -3.1717 | 3.2473 -3.6778 | | 880 | 2.1194 -2.2925 | 2.5071 -2.7531 | 2.8471 -3.1686 | 3.2494 -3.6750 | | 900 | 2.1202 -2.2914 | 2.5883 -2.7515 | 2.8486 -3.1665 | 3.2514 -3.6722 | | 92 0
9 40 | 2.1210 -2.2904 | 2.5094 -2.7500 | 2.8501 -3.1645 | 3.2534 -3.6695 | | 774 | 2.1218 -2.2893 | 2.5106 -2.7485 | 2.8516 -3.1626 | 3.2553 -3.6669 | ## APPENDIX B This appendix presents the computer program used to compute the density functions for a specified extreme mean and its confidence intervals. ``` PROGRAM MAIN (OUTPUT, TAPE 13) COMMON /SHARE/ N(41), K, DEN(103,9), DIST(103,9), T(103), INDEX(9) COMMON /CHARE/ A(41), B(41), C(41), D(41), DD(41), F(41) C**** ROUTINE TO PRODUCE TABLE FOR DISTRIBUTION OF C**** VALUES ABOVE A.. C**** C**** CONFIDENCE INTERVAL COMPUTATIONS.. C**** DATA N/30,40,50,60/ AA = 1.753975 00 1 I=5,39 N(I) = 60 + I - 4 C**** N(40) = 100 N(41) = 120 C**** DO 7 L=1,2 DO 2 J=1,3 00 4 I=1,41 IF(N(I).LF.120) -F(I)=SORT(FLOAT(N(I)-1)/2.)*GAMMA(FLOAT(N(I)-1)/2.)/GAMMA(FLOAT(N(-I))/2.) IF (N(I).GT.12C) -F(I)=EXP(+.5)*(FLOAT(N(I)-1)/FLOAT(N(I)))**((FLOAT(N(I))-1.)/2.) A(I) =. 1./SQRT(FLOAT(N(I))) + AA*F(I)/SQRT(FLOAT(2*N(I)-1)) B(I) = AA*(F(I)*SQRT(FLOAT(2*N(I)-3)/FLOAT(2*N(I)-2))-1.) OD(I) = FLOAT(N(I)) + AA + AA + (F(I) + F(I) - 1.) C(I) = SOFT((1.+DD(I))/FLOAT(2*N(I)*N(I)-1)) 4 O(I) = SORT(FLOAT(2*N(I)-3)) IF(L.EG.2)3,6 PRINT RESULTS. TABLE 1 .. 6 IF(J.EQ.1) CALL FRINT1 C**** FRINT RESULTS, TABLE 2.. 3 IF (J.EQ.2) CALL PRINT2 IF (J.EQ.3) PRINT 184 104 FORMAT(" "76("-")) CONTINUE C**** CALL DEAW1 N(1) = 1.40 DO 98 K=2,41 98 N(K)=N(K-1)+26 C**** 7 K= (C**** CALL PLOT (0.,0.,999) END ``` ``` SUBROUTINE DRAW1 DIMENSION ZNORM (183,9) COMMON /SHARE/ N(41), K, DEN(103,9), DIST(103,9), T(103), INDEX(9) COMMON /CHARE/ A (41), B (41), C (41), D (41), DD (41), F (41) DATA INDEX/1,2,3,4,14,24,34,40,41/ DATA FI/172162207732504205518/ CALL PLOTS (0,0,13) CALL FACTOR(2./2.54) CALL PLOT (1.,2.,-3) T(192) = -5. T(103) = 1. ZNORM(132) = 0. ZNGRM(103) = .05 C**** FILL ARRAYS WITH DENSITY AND DISTRIBUTION VALUES.. C**** DO 109 K=1,9 I = INDEX(K) C**** DO 3 J=1,101 T(J) = -5. + FLOAT(J-1)/10. ZNORM(J) = 1./SORT(2.*FI*EXP(T(J)*T(J))) X = (C(I) + C(I) + I(J) - B(I)) / (A(I) + C(I) + I(J)) DIST(J,K) = FNORMAL(X) DEN(J_*K) = C(I)*(A(I)*O(I)-9(I))/(SQRT(2**FI)*(A(I)-C(I)*T(J))**2) -*EXP(-(C(I)*D(I)*T(J)-9(I))**2/(2.*(A(I)-C(I)*T(J))**2)) 3 CONTINUE C**** DEN(102,K) = 6. DEN(103.K) = .05 C**** DO THE PLCTTING STUFF CALL LINE (T, DEN(1, K), 161, 1, 1, 0) CALL DASHL (T,ZNORM,101,1,0,0) CALL SYMBOL(1.,8.5,.15,"DENSITY FUNCTION OF Z(...) AND T(-) = (MU H -HAT - MU)/S(MU HAT)", 0.,62) CALL SYMBOL(8.5,8.,.15,"N = ",0.,4) CALL NUMBER (9.1,8.,.15, FLOAT (N (INDEX (K))),0.,-1) CALL PLOT (12., 0.,-3) C**** FRINT RESULTS. TABLE 3.. 109 CALL PRINT4 RETURN END ``` ``` SUBROUTINE FRINTA DIMENSION Z(4) COMMON /SHARE/ N(41), K, DEN(103, 9), DIST(103, 9), T(103), INDEX(9) COMMON /CHARE/ A(41),8(41),C(41),D(41),DD(41),F(41) FCNU(A+3+C+U+Z) = (B+A+Z)/(C+(G+Z)) FCNL(A+B+C+D+Z) = (B-A+Z)/(C+(D-Z)) DATA 7/1.645.1.96. 2.24,2.576/ PRINT 180, (N(I), F(I), SQRT((1.+DU(I))/FLOAT(N(I))), A(I), B(I), C(I), -0(1) \cdot I = 1 \cdot 41) 160 FOFMAT (*1*,//, * TABLE 1.*,/,T10,"VARIOUS FUNCTION OF N NEEDED IN -THE CALCULATION OF THE", /, TIC, "DISTRIBUTION OF T = (MU HAT - MU)/S - ('4U HAT) ", //, T15, "F = (GAMMA((N-1)/2)/GAMMA(N/2)) +SQRT((N-1)/2) ", / 115,"01 = N*(F*F - 1)*A1*A1",/, -, 115."A = 1./SQRT(N) + A1*F*(1./SQRT(2*(N-1)))",/, T15,"9 = A1*(F*SQRT(2*N-3)/(2*N-2)) -1)",/, T15,"C = SQRT((1 + D1)/(2*N*(N-1))",/, T15."C = S3RT(2+N-3)",///, -" N".T13, "F",T20, "SQRT((1+D1)/N)",T38,"A",T48,"B",T58,"C",T68,"D" -,//, -(" "I3,T9,F9.6,T20,F9.6,T33,F9.6,T43,F9.6,T53,F9.6,T63,F9.6)) RETURN ENTRY FRINTS 4 FRINT 132, (N(I), (FLNU(A(I), 8(I), C(I), D(I), Z(M)), FCNL(A(I),B(I),C(I),D(I),Z(M)),M=1,4),I=1,41) 162 FORMAT ("1", //" TABLE 2: UPPER AND LOWER CONFIDENCE BOUNDS OF T = - (MU HAT. - MU)/5(MU)"/T15,"FOR ALPHA =0.90, 0.95, 0.975, AND 0.99"// - T12,"(=.9" -/T12, "UPPER 30UND = (8+4+Z)/(C+(U+Z)), LOWER BOUND = (8-4+Z)/(C+(D -- Z)) "/, T15, "(Z VALUES ARE STANDARD NORMAL VALUES FOR ALPHA) "//" ", -76("-"),/,T2,"SAMPLE",13,"I ALPHA = 0.90",T26,"I ALPHA = 0.95",T43 -,"I ALFHA = 0.975".T60,"I ALPHA = 0.99".T77."I"./.T9.69("-")./. -T4, "SIZE", T9, "I UPPER I LOWER", T26, "I UPPER I LOWER", T43, "I UPPE -R I LCHER", TEQ, "I UPPER I LOWER", T77, "I", /, T9, -"I BOUND I BOUND", T26, "I BOUND I BOUND", T43, "I BOUND I BOUND", -T6(,"I BOUND I BOUND", T77, "I", /, T2, 76 ("-"),/ (" "I3.T9."I ".F6. 4.1X.F7. 4.T26."I ".F6. 4.1X.F7. 4.T43."I ". -F6.4.1X.F7.4.T60,"I ".F6.4.1X.F7.4.T77,"I")) RETURN ENTRY FRINT4 PRINT 136, N(INDEX(K)), (T(II), DEN(II, K), DIST(II, K), T(II+58), DEN(II -+5(.K).JIST(II+50.K).II=1.50) 106 FORMAT (*1*,//," TABLE 3. DENSITY (D(T)) AND DISTRIBUTION (F(T -)) OF THE RANDOM VARIABLE"/, T15, "T = (NU HAT - MU)/S(MU HAT) -N = _{,13,//,} -112, "T", T22, "C(T)", T32, "F(T)", T45, "T", T55, "D(T)", T65, "F(T)",/, -(10(* *.110.F6.2.T20.F9.6.T30.F9.6.T43.F6.2.T53.F9.6.T63.F9.6./) -)) RETURN END ``` ``` SUPPOUTINE CINTRVL(XBAR, SIGMA, FCNU, FCNL, N. XLOW, XHIGH) C**** C**** SUBROUTINE TO PRODUCE 95 PERCENT CONFIDENCE INTERVALS C**** FOR EXTREEM MEAN C**** C++++ BY BROWNLOW, SDC/ISI 3/79 C++++ C++++ INFUT : C++++ XBAR CATA MEAN SIGMA DATA STANDARD DEVIATION FCNU.FCNL FUNCTIONAL VALUES PASSED IN FROM C**** N NUMBER OF OBSERVATIONS IN THE SAMPLE.. C**** MAIN ROUTINE WRITTEN BY CRUM. C**** C**** CUTPUT XLOW LOWER CONFIDENCE INTERVAL VALUE C*** C * * * * XHIGH UPPER CONFIDENCE INTERVAL VALUE. C++++ FOR VARIOUS PROBABILITY VALUES, AA AND Z MUST C * * * * BE CHANGED.. C**** SEE PAPER FOR DETAILS ... C**** AA = 2.362712834 7 = 1.644853628 C**** C**** FN = N F = EXF(.5)*((FN-1.)/FN)**((FN-1.)/2.) C**** DD = FN+AA+(F+F-1.) XLCW = XBAR + AA*F*SIGMA - FCNU*SIGMA*SQRT((1.+DD)/FN) XHIGH = XBAR + AA*F*SIGMA - FCHL*SIGMA*SORT((1.+DD)/FN) C**** C**** C**** RETURN ENU ``` ### **REFERENCES** - 1. Bauer, Carol A.; Mackall, Karen G.; Stoll, Frederick; and Tremback, Jeffrey W.: Comparison of Flight and Wind Tunnel Model Instantaneous Distortion Data From a Mixed-Compression Inlet. YF-12 Experiments Symposium, Vol. 3. NASA CP-2054, 1978, pp. 295-375. - 2. Fisz, Marek: Probability Theory and Mathematical Statistics. Third ed. John Wiley & Sons, Inc., c. 1963. - 3. Zacks, Shelemyahu: The Theory of Statistical Inference. John Wiley & Sons, Inc., c. 1971. | 1. | Report No. | 2. Government Access | sion No. | 3. Recipient's Catalog | No. | | |--|--|--|---|--|---------------|--| | NASA TM-81346 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS | | | | 5. Report Date December 1979 6. Performing Organiz | | | | 7. | Author(s) Ram Swaroop and James D. Brown Corporation) and William R. Winte Research Center) | Flight | 8. Performing Organize H-1088 | ation Report No. | | | | 9. | Performing Organization Name and Address | | | 168-02-05 | | | | | NASA Dryden Flight Research Cer
P. O. Box 273
Edwards, California 93523 | nter | - | 11. Contract or Grant
NAS4-2334 | No. | | | 12. | Sponsoring Agency Name and Address | | | 13. Type of Report an
Technical Men | | | | | National Aeronautics and Space Ad Washington, D.C. 20546 | iministration | ļ- | 14. Sponsoring Agency | Code | | | 15. | Supplementary Notes | | | | | | | 16. | Abstract | | | | | | | | | | | | | | | | value statistics obta in this study is defi distribution. An unbiased esti bution are derived. samples is found to be the variance of the ubound. | mate of this extr
The distribution
e non-normal. Funbiased estimate
gram used to obtaized unbiased est
or any data are | reme mean and its lar
of this estimate eve
urther, as the sample
converges to the Cra
ain the density and c
timate, and the confi
included for ready ap | An extreme mean truncated normal rge sample distrement for very large size increases amer-Rao lower distribution functionidence intervals oplication. An | i -
e
• | | | 17. | Key Words (Suggested by Author(s)) Maximum value prediction Truncated distribution Normal distribution Unbiased estimate | imum value prediction ncated distribution mal distribution plased estimate Unclassified—Unlimited | | category: 65 | | | | 19. | Security Classif. (of this report) | 20. Security Classif. (d | of this page) | 21. No. of Pages | 22. Price* | | | | Unclassified | Unclassified | - | 39 | \$3.75 | |